Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2(2), 127–137.

Authors 2
  1. Yosef Yarden (first)
  2. Mark X. Sliwkowski (additional)
References 112 Referenced 5,456
  1. Burden, S. & Yarden, Y. Neuregulins and their receptors: a versatile signalling module in organogenesis and oncogenesis. Neuron 18, 847–855 ( 1997). (10.1016/S0896-6273(00)80324-4) / Neuron by S Burden (1997)
  2. Borg, J. -P. et al. ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nature Cell Biol. 2, 407–414 (2000). (10.1038/35017038) / Nature Cell Biol. by J-P Borg (2000)
  3. Monilola, A. O., Neve, R. M., Lane, H. A. & Hynes, N. E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19, 3159–3167 ( 2000). (10.1093/emboj/19.13.3159) / EMBO J. by AO Monilola (2000)
  4. Baselga, J. et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14, 737–744 (1996).First full report of clinical tests of an anti-ErbB2 antibody as a single agent. Patients with metastatic breast cancer were intravenously treated with the recombinant drug. Toxicity was minimal and objective response was observed in several organs of a small group of patients. (10.1200/JCO.1996.14.3.737) / J. Clin. Oncol. by J Baselga (1996)
  5. Cobleigh, M. A. et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease . J. Clin. Oncol. 17, 2639– 2648 (1999). (10.1200/JCO.1999.17.9.2639) / J. Clin. Oncol. by MA Cobleigh (1999)
  6. Dickson, R. B. & Lippman, M. E. Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocrin. Rev. 8, 29–43 (1987). (10.1210/edrv-8-1-29) / Endocrin. Rev. by RB Dickson (1987)
  7. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999). (10.1038/47260) / Nature by N Prenzel (1999)
  8. Jones, J. T., Akita, R. W. & Sliwkowski, M. X. Binding specificities and affinities of EGF domains for ErbB receptors. FEBS Lett. 447, 227– 231 (1999).Relative binding affinities of the EGF domains of 11 ErbB ligands were measured on 6 ErbB receptor combinations using soluble receptors. This format allowed precise determination of the effect of heterodimerization on ligand affinity and specificity. (10.1016/S0014-5793(99)00283-5) / FEBS Lett. by JT Jones (1999)
  9. Tzahar, E. et al. Bivalence of EGF-like ligands drives the ErbB signalling network . EMBO J. 16, 4938–4950 (1997). (10.1093/emboj/16.16.4938) / EMBO J. by E Tzahar (1997)
  10. Landgraf, R. & Eisenberg, D. Heregulin reverses the oligomerization of HER3. Biochemistry 39, 8503– 8511 (2000). (10.1021/bi000953+) / Biochemistry by R Landgraf (2000)
  11. Ferguson, K. M., Darling, P. J., Mohan, M. J., Macatee, T. L. & Lemmon, M. A. Extracellular domains drive homo- but not heterodimerization of erbB receptors. EMBO J. 19, 4632–4643 (2000). (10.1093/emboj/19.17.4632) / EMBO J. by KM Ferguson (2000)
  12. Guy, P. M., Platko, J. V., Cantley, L. C., Cerione, R. A. & Carraway, K. L. Insect cell-expressed p180ErbB3 possesses an impaired tyrosine kinase activity. Proc. Natl Acad. Sci. USA 91, 8132–8136 ( 1994). (10.1073/pnas.91.17.8132) / Proc. Natl Acad. Sci. USA by PM Guy (1994)
  13. Klapper, L. N. et al. The ErbB2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc. Natl Acad. Sci. USA 96, 4995– 5000 (1999). (10.1073/pnas.96.9.4995) / Proc. Natl Acad. Sci. USA by LN Klapper (1999)
  14. Tzahar, E. et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell. Biol. 16, 5276 –5287 (1996). (10.1128/MCB.16.10.5276) / Mol. Cell. Biol. by E Tzahar (1996)
  15. Graus Porta, D., Beerli, R. R., Daly, J. M. & Hynes, N. E. ErbB2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signalling. EMBO J. 16, 1647–1655 (1997). (10.1093/emboj/16.7.1647) / EMBO J. by D Graus Porta (1997)
  16. Elenius, K. et al. Characterization of a naturally occurring ErbB4 isoform that does not bind or activate phosphatidyl inositol 3-kinase. Oncogene 18, 2607–2615 ( 1999). (10.1038/sj.onc.1202612) / Oncogene by K Elenius (1999)
  17. Olayioye, M. A. et al. ErbB1 and ErbB2 acquire distinct signalling properties dependent upon their dimerization partner. Mol. Cell. Biol. 18 , 5042–5051 (1998). (10.1128/MCB.18.9.5042) / Mol. Cell. Biol. by MA Olayioye (1998)
  18. Soltoff, S. P. & Cantley, L. C. p120cbl is a cytosolic adapter protein that associates with phosphoinositide 3-kinase in response to epidermal growth factor in PC12 and other cells. J. Biol. Chem. 271, 563–567 (1996). (10.1074/jbc.271.1.563) / J. Biol. Chem. by SP Soltoff (1996)
  19. Schaeffer, L., Duclert, N., Huchet Dymanus, M. & Changeux, J. P. Implication of a multisubunit Ets-related transcription factor in synaptic expression of the nicotinic acetylcholine receptor. EMBO J. 17, 3078–3090 (1998). (10.1093/emboj/17.11.3078) / EMBO J. by L Schaeffer (1998)
  20. Fedi, P., Pierce, J., Di Fiore, P. P. & Kraus, M. H. Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase Cγ or GTPase-activating protein, distinguishes ErbB3 signalling from that of other ErbB/EGFR family members. Mol. Cell. Biol. 14, 492–500 (1994). (10.1128/MCB.14.1.492) / Mol. Cell. Biol. by P Fedi (1994)
  21. Pinkas-Kramarski, R. et al. Diversification of Neu differentiation factor and epidermal growth factor signalling by combinatorial receptor interactions. EMBO J. 15, 2452–2467 ( 1996).References 21 and 22 describe analyses of signal transduction by individual ErbB proteins and their combinations expressed in isolation in myeloid cells. This allows the pan-ErbB stimulatory effect of ErbB2 to be demonstrated. (10.1002/j.1460-2075.1996.tb00603.x) / EMBO J. by R Pinkas-Kramarski (1996)
  22. Riese, D. J. II, van Raaij, T. M., Plowman, G. D., Andrews, G. C. & Stern, D. F. The cellular response to neuregulins is governed by complex interactions of the ErbB receptor family. Mol. Cell. Biol. 15, 5770– 5776 (1995). (10.1128/MCB.15.10.5770) / Mol. Cell. Biol. by DJ Riese II (1995)
  23. Kokai, Y. et al. Synergistic interaction of p185c-neu and the EGF receptor leads to transformation of rodent fibroblasts. Cell 58, 287–292 (1989). (10.1016/0092-8674(89)90843-X) / Cell by Y Kokai (1989)
  24. Alimandi, M. et al. Cooperative signalling of ErbB3 and ErbB2 in neoplastic transformation of human mammary carcinoma cells. Oncogene 15, 1813–1821 (1995). / Oncogene by M Alimandi (1995)
  25. Wallasch, C. et al. Heregulin-dependent regulation of HER2/neu oncogenic signalling by heterodimerization with HER3. EMBO J. 14, 4267–4275 (1995). (10.1002/j.1460-2075.1995.tb00101.x) / EMBO J. by C Wallasch (1995)
  26. Chausovsky, A. et al. Molecular requirements for the effect of neuregulin on cell spreading, motility and colony organization. Oncogene 19, 878–888 (2000). (10.1038/sj.onc.1203410) / Oncogene by A Chausovsky (2000)
  27. Kainulainen, V. et al. A natural ErbB4 isoform that does not activate phosphoinositide 3-kinase mediates proliferation but not survival or chemotaxis. J. Biol. Chem. 275, 8641–8649 (2000). (10.1074/jbc.275.12.8641) / J. Biol. Chem. by V Kainulainen (2000)
  28. Vaskovsky, A., Lupowitz, Z., Erlich, S. & Pinkas-Kramarski, R. ErbB4 activation promotes neurite outgrowth in PC12 cells. J. Neurochem. 74, 979–987 ( 2000). (10.1046/j.1471-4159.2000.0740979.x) / J. Neurochem. by A Vaskovsky (2000)
  29. Carpenter, G. Employment of the epidermal growth factor receptor in growth factor-independent signalling pathways. J. Cell Biol. 146, 697–702 (1999). (10.1083/jcb.146.4.697) / J. Cell Biol. by G Carpenter (1999)
  30. Daub, H., Wallasch, C., Lankenau, A., Herrlich, A. & Ullrich, A. Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 16, 7032– 7044 (1997).Elucidation in cultured cells of crosstalk between G-protein-coupled receptors and ErbB signalling. Ectopic expression of G q - or G i -coupled receptors revealed the essential function of ErbB1 in downstream signalling of these G proteins to mitogen-activated protein kinases. (10.1093/emboj/16.23.7032) / EMBO J. by H Daub (1997)
  31. Luttrell, L. M., Della Rocca, G. J., van Biesen, T., Luttrell, D. K. & Lefkowitz, R. J. Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J. Biol. Chem. 272, 4637–4644 ( 1997). (10.1074/jbc.272.7.4637) / J. Biol. Chem. by LM Luttrell (1997)
  32. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A. & Schlessinger, J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383, 547–550 (1996). (10.1038/383547a0) / Nature by I Dikic (1996)
  33. Luttrell, L. M. et al. β-Arrestin-dependent formation of β2 adrenergic receptor–Src protein kinase complexes. Science 283, 655–661 (1999). (10.1126/science.283.5402.655) / Science by LM Luttrell (1999)
  34. Yamauchi, T. et al. Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature 390, 91–96 (1997). (10.1038/36369) / Nature by T Yamauchi (1997)
  35. Wong, A. J. et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA 89 , 2965–2969 (1992). (10.1073/pnas.89.7.2965) / Proc. Natl Acad. Sci. USA by AJ Wong (1992)
  36. Qiu, Y., Ravi, L. & Kung, H. J. Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells. Nature 393, 83 –85 (1998). (10.1038/30012) / Nature by Y Qiu (1998)
  37. Miettinen, P. et al. Epithelial immaturity and multiorgan faliure in mice lacking epidermal growth factor receptor. Nature 376, 337–341 (1995). (10.1038/376337a0) / Nature by P Miettinen (1995)
  38. Sibilia, M., Steinbach, J. P., Stingl, L., Aguzzi, A. & Wagner, E. F. A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J. 17, 719–731 (1998). (10.1093/emboj/17.3.719) / EMBO J. by M Sibilia (1998)
  39. Threadgill, D. W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269, 230–234 (1995). (10.1126/science.7618084) / Science by DW Threadgill (1995)
  40. Mann, G. et al. Mice with null mutations of the TGFα gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell 73, 249– 261 (1993). (10.1016/0092-8674(93)90227-H) / Cell by G Mann (1993)
  41. Luetteke, N. C. et al. TGFα deficiency results in hair follicles and eye abnormalities in targeted and Waved-1 mice. Cell 73, 263 –278 (1993). (10.1016/0092-8674(93)90228-I) / Cell by NC Luetteke (1993)
  42. Liu, X. et al. Domain-specific gene disruption reveals critical regulation of neuregulin signalling by its cytoplasmic tail. Proc. Natl Acad. Sci. USA 95, 13024–13029 (1998). (10.1073/pnas.95.22.13024) / Proc. Natl Acad. Sci. USA by X Liu (1998)
  43. Kramer, R. et al. Neuregulins with an Ig-like domain are essential for mouse myocardial and neuronal development. Proc. Natl Acad. Sci. USA 93, 4833–4838 ( 1996). (10.1073/pnas.93.10.4833) / Proc. Natl Acad. Sci. USA by R Kramer (1996)
  44. Britsch, S. et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 12, 1825–1836 (1998).By targeting ErbB2, ErbB3 and NRG1, the authors revealed that the ternary complex has an essential role in the developing sympathetic nervous system. Apparently, signalling by this complex drives migration of sympathetic cells from the neural crest. (10.1101/gad.12.12.1825) / Genes Dev. by S Britsch (1998)
  45. Erickson, S. L. et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development 124, 4999–5011 ( 1997). (10.1242/dev.124.24.4999) / Development by SL Erickson (1997)
  46. Riethmacher, D. et al. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389, 725– 730 (1997). (10.1038/39593) / Nature by D Riethmacher (1997)
  47. Fischbach, G. D. & Rosen, K. M. ARIA: a neuromuscular junction neuregulin. Annu. Rev. Neurosci. 20, 429–458 (1997). (10.1146/annurev.neuro.20.1.429) / Annu. Rev. Neurosci. by GD Fischbach (1997)
  48. Ozaki, M., Sasner, M., Yano, R., Lu, H. S. & Buonanno, A. Neuregulin-β induces expression of an NMDA-receptor subunit. Nature 390, 691– 694 (1997).Synaptogenesis in the central nervous system involves marked changes in the composition of N -methyl- d -aspartate receptors. This in vitro study implies that neuregulins regulate the composition of the neurotransmitter receptor in maturing synapses in the brain, in a manner analogous to the neuromuscular junction. (10.1038/37795) / Nature by M Ozaki (1997)
  49. Dong, J. et al. Metalloprotease-mediated ligand release regulates autocrine signalling through the epidermal growth factor receptor. Proc. Natl Acad. Sci. USA 96, 6235–6240 ( 1999). (10.1073/pnas.96.11.6235) / Proc. Natl Acad. Sci. USA by J Dong (1999)
  50. Modjtahedi, H. & Dean, C. The receptor for EGF and its ligands: Expression, prognostic value and target for therapy in cancer. Int. J. Oncol. 4, 277– 296 (1994). / Int. J. Oncol. by H Modjtahedi (1994)
  51. Salomon, D. S., Brandt, R., Ciardiello, F. & Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies . Crit. Rev. Oncol. Hematol. 19, 183– 232 (1995). (10.1016/1040-8428(94)00144-I) / Crit. Rev. Oncol. Hematol. by DS Salomon (1995)
  52. Scher, H. I. et al. Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor-α in the progression of prostatic neoplasms. Clin. Cancer Res. 1, 545– 550 (1995). / Clin. Cancer Res. by HI Scher (1995)
  53. Wikstrand, C. J., Reist, C. J., Archer, G. E., Zalutsky, M. R. & Bigner, D. D. The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immunotherapeutic target. J. Neurovirol. 4, 148–158 (1998). (10.3109/13550289809114515) / J. Neurovirol. by CJ Wikstrand (1998)
  54. Moscatello, D. K. et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumours. Cancer Res. 55, 5536–5539 (1995). / Cancer Res. by DK Moscatello (1995)
  55. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235 , 177–182 (1987). First demonstration of the prognostic value of ErbB2 amplification in breast cancer. Gene amplification was correlated with several disease parameters, and was a significant predictor of patient survival and time to relapse. (10.1126/science.3798106) / Science by DJ Slamon (1987)
  56. Ross, J. S. & Fletcher, J. A. The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells 16, 413–428 ( 1998). (10.1002/stem.160413) / Stem Cells by JS Ross (1998)
  57. Paik, S. & Liu, E. T. HER2 as a predictor of therapeutic response in breast cancer. Breast Dis. 11, 91–102 (2000). (10.3233/BD-1999-11108) / Breast Dis. by S Paik (2000)
  58. Press, M. F. et al. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas . J. Clin. Oncol. 15, 2894– 2904 (1997). (10.1200/JCO.1997.15.8.2894) / J. Clin. Oncol. by MF Press (1997)
  59. Muss, H. B. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N. Engl. J. Med. 330, 1260–1266 (1994). First evidence that ErbB2 can predict therapeutic response in breast cancer. Using tissue blocks obtained from patients treated with adjuvant chemotherapy, the authors found that patients randomly assigned to a high-dose regimen of adjuvant chemotherapy had significantly longer disease-free and overall survival if their tumours overexpressed c-ErbB2. (10.1056/NEJM199405053301802) / N. Engl. J. Med. by HB Muss (1994)
  60. Borg, A. et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett. 81, 137–144 (1994). (10.1016/0304-3835(94)90194-5) / Cancer Lett. by A Borg (1994)
  61. Carlomagno, C. et al. c-erb B2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases . J. Clin. Oncol. 14, 2702– 2708 (1996). (10.1200/JCO.1996.14.10.2702) / J. Clin. Oncol. by C Carlomagno (1996)
  62. Pietras, R. J. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10, 2435–2446 (1995). / Oncogene by RJ Pietras (1995)
  63. Giani, C. et al. Increased expression of c-ErbB2 in hormone-dependent breast cancer cells inhibits cell growth and induces differentiation. Oncogene 17, 425–432 ( 1998). (10.1038/sj.onc.1201954) / Oncogene by C Giani (1998)
  64. Xia, W. et al. Combination of EGFR, HER-2/neu, and HER-3 is a stronger predictor for the outcome of oral squamous cell carcinoma than any individual family members. Clin. Cancer Res. 5, 4164– 4174 (1999). / Clin. Cancer Res. by W Xia (1999)
  65. Lyne, J. C. et al. Tissue expression of neu differentiation factor/heregulin and its receptor complex in prostate cancer and its biologic effects on prostate cancer cells in vitro. Cancer J. Sci. Am. 3, 21–30 (1997). / Cancer J. Sci. Am. by JC Lyne (1997)
  66. Kew, T. Y. et al. c-ErbB4 protein expression in human breast cancer. Br. J. Cancer 82, 1163–1170 (2000). (10.1054/bjoc.1999.1057) / Br. J. Cancer by TY Kew (2000)
  67. Gilbertson, R. J., Perry, R. H., Kelly, P. J., Pearson, A. D. & Lunec, J. Prognostic significance of HER2 and HER4 co-expression in childhood medulloblastoma. Cancer Res. 57, 3272–3280 (1997). / Cancer Res. by RJ Gilbertson (1997)
  68. Sliwkowski, M. X. et al. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin. Oncol. 26, 60–70 (1999). / Semin. Oncol. by MX Sliwkowski (1999)
  69. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nature Med. 6, 443– 446 (2000). (10.1038/74704) / Nature Med. by RA Clynes (2000)
  70. Disis, M. L. & Cheever, M. A. HER-2/neu protein: a target for antigen-specific immunotherapy of human cancer. Adv. Cancer Res. 71, 343–371 ( 1997). (10.1016/S0065-230X(08)60103-7) / Adv. Cancer Res. by ML Disis (1997)
  71. Sampson, J. H. et al. Unarmed, tumour-specific monoclonal antibody effectively treats brain tumours. Proc. Natl Acad. Sci. USA 97, 7503–7508 (2000). (10.1073/pnas.130166597) / Proc. Natl Acad. Sci. USA by JH Sampson (2000)
  72. Wu, X. et al. Involvement of p27KIP1 in G1 arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody. Oncogene 12, 1397–1403 (1996). / Oncogene by X Wu (1996)
  73. Levitzki, A. & Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782– 1788 (1995). (10.1126/science.7892601) / Science by A Levitzki (1995)
  74. Fry, D. W. et al. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc. Natl Acad. Sci. USA 95, 12022– 12027 (1998). (10.1073/pnas.95.20.12022) / Proc. Natl Acad. Sci. USA by DW Fry (1998)
  75. Brugge, J. S. New intracellular targets for drug design, Science 260, 918–919 (1993). (10.1126/science.8388123) / Science by JS Brugge (1993)
  76. Chang, J. Y. et al. The tumour suppression activity of E1A in HER-2/neu-overexpressing breast cancer. Oncogene 14, 561– 568 (1997). (10.1038/sj.onc.1200861) / Oncogene by JY Chang (1997)
  77. Beerli, R. R., Wels, W. & Hynes, N. E. Intracellular expression of single chain antibodies reverts ErbB2 transformation. J. Biol. Chem. 269, 23931–23936 (1994). (10.1016/S0021-9258(19)51027-4) / J. Biol. Chem. by RR Beerli (1994)
  78. Alvarez, R. D. & Curiel, D. T. A phase I study of recombinant adenovirus vector-mediated delivery of an anti-ErbB2 single chain (sFv) antibody gene for previously treated ovarian and extraovarian cancer patients. Hum. Gene Ther. 8, 229– 242 (1997). (10.1089/hum.1997.8.2-229) / Hum. Gene Ther. by RD Alvarez (1997)
  79. Ebbinghaus, S. W. et al. Triplex formation inhibits HER-2/neu transcription in vitro . J. Clin. Invest. 92, 2433– 2439 (1993). (10.1172/JCI116850) / J. Clin. Invest. by SW Ebbinghaus (1993)
  80. Vaughn, J. P. et al. Antisense DNA downregulation of the ERBB2 oncogene measured by a flow cytometric assay. Proc. Natl Acad. Sci. USA 92, 8338–8342 (1995). (10.1073/pnas.92.18.8338) / Proc. Natl Acad. Sci. USA by JP Vaughn (1995)
  81. Hsieh, S. S. et al. ERBB-2 expression is rate-limiting for epidermal growth factor-mediated stimulation of ovarian cancer cell proliferation. Int. J. Cancer 86, 644–651 ( 2000). (10.1002/(SICI)1097-0215(20000601)86:5<644::AID-IJC7>3.0.CO;2-T) / Int. J. Cancer by SS Hsieh (2000)
  82. Qian, X. et al. Kinase-deficient neu proteins suppress epidermal growth factor receptor function and abolish cell transformation. Oncogene 9, 1507–1514 (2000). / Oncogene by X Qian (2000)
  83. Kalmes, A., Vesti, B., Daum, G., Abraham, J. A. & Clowes, A. W. Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal grwoth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor. Circulation Res. 87, 92–98 ( 2000). (10.1161/01.RES.87.2.92) / Circulation Res. by A Kalmes (2000)
  84. Ben-Bassat, H. & Klein, B. Y. Inhibitors of tyrosine kinases in the treatment of psoriasis. Curr. Pharm. Des. 6, 933–942 ( 2000). (10.2174/1381612003400182) / Curr. Pharm. Des. by H Ben-Bassat (2000)
  85. Nakata, A. et al. Localization of heparin-binding epidermal growth factor-like growth factor in human coronary arteries. Possible roles of HB-EGF in the formation of coronary atherosclerosis. Circulation 94, 2778–2786 (1996). (10.1161/01.CIR.94.11.2778) / Circulation by A Nakata (1996)
  86. Wells, A. EGF receptor. Int. J. Biochem. Cell Biol. 31, 637–643 (1999). (10.1016/S1357-2725(99)00015-1) / Int. J. Biochem. Cell Biol. by A Wells (1999)
  87. Patel, N. V. et al. Neuregulin-1 and human epidermal growth factor receptors 2 and 3 play a role in human lung development in vitro. Am. J. Respir. Cell Mol. Biol. 22, 432– 440 (2000). (10.1165/ajrcmb.22.4.3854) / Am. J. Respir. Cell Mol. Biol. by NV Patel (2000)
  88. Levi, A. D. et al. The influence of heregulins on human Schwann cell proliferation . J. Neurosci. 15, 1329– 1340 (1995). (10.1523/JNEUROSCI.15-02-01329.1995) / J. Neurosci. by AD Levi (1995)
  89. Levi, A. D. et al. The role of cultured Schwann cell grafts in the repair of gaps within the peripheral nervous system of primates. Exp. Neurol. 143, 25–36 ( 1997). (10.1006/exnr.1996.6344) / Exp. Neurol. by AD Levi (1997)
  90. Cohen, S. & Carpenter, G. Human epidermal growth factor: isolation and chemical and biological properties. Proc. Natl Acad. Sci. USA 72, 1317–1321 ( 1975). (10.1073/pnas.72.4.1317) / Proc. Natl Acad. Sci. USA by S Cohen (1975)
  91. Bray, D. & Lay, S. Computer simulated evolution of a network of cell-signalling molecules. Biophys. J. 66, 972–977 (1994). (10.1016/S0006-3495(94)80878-1) / Biophys. J. by D Bray (1994)
  92. Aroian, R. V. & Sternberg, P. W. Multiple functions of let-23, a Caenorhabditis elegans receptor tyrosine kinase gene required for vulval induction. Genetics 128, 251– 267 (1991). (10.1093/genetics/128.2.251) / Genetics by RV Aroian (1991)
  93. Volk, T. Signalling out Drosophila tendon cells. Trends Genet. 15, 448–453 (1999). (10.1016/S0168-9525(99)01862-4) / Trends Genet. by T Volk (1999)
  94. Schweitzer, R., Shaharabany, M., Seger, R. & Shilo, B.-Z. Secreted Spitz triggers the DER signalling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 10, 1518–1529 (1995). (10.1101/gad.9.12.1518) / Genes Dev. by R Schweitzer (1995)
  95. Schweitzer, R. et al. Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376, 699–702 (1995). (10.1038/376699a0) / Nature by R Schweitzer (1995)
  96. Baulida, J., Kraus, M. H., Alimandi, M., Di Fiore, P. P. & Carpenter, G. All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J. Biol. Chem. 271, 5251–5257 (1996).Comparative analysis of ErbB proteins that shows that there are substantial differences in mechanisms of endocytosis-based attenuation. (10.1074/jbc.271.9.5251) / J. Biol. Chem. by J Baulida (1996)
  97. Waterman, H., Sabanai, I., Geiger, B. & Yarden, Y. Alternative intracellular routing of ErbB receptors may determine signalling potency. J. Biol. Chem. 273, 13819–13827 (1998). (10.1074/jbc.273.22.13819) / J. Biol. Chem. by H Waterman (1998)
  98. Worthylake, R. & Wiley, H. S. Structural aspects of the epidermal growth factor receptor required for transmodulation of ErbB2/neu . J. Biol. Chem. 272, 8594– 8601 (1997). (10.1074/jbc.272.13.8594) / J. Biol. Chem. by R Worthylake (1997)
  99. Lenferink, A. E. et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signalling superiority to receptor heterodimers . EMBO J. 17, 3385–3397 (1998). (10.1093/emboj/17.12.3385) / EMBO J. by AE Lenferink (1998)
  100. Sorkin, A., Di Fiore, P. P. & Carpenter, G. The carboxyl terminus of epidermal growth factor receptor/ErbB2 chimera is internalization impaired. Oncogene 8, 3021–3028 (1993). / Oncogene by A Sorkin (1993)
  101. Muthuswamy, S. K., Gilman, M. & Brugge, J. Controlled dimerization of ErbB receptors provide evidence for differential signalling by homo- and heterodimers. Mol. Cell. Biol. 19, 6845–6857 ( 1999). (10.1128/MCB.19.10.6845) / Mol. Cell. Biol. by SK Muthuswamy (1999)
  102. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998). First report of the endocytic-sorting function of c-Cbl, a ubiquitin ligase that is a major substrate of ErbB1. Unlike sorting by c-Cbl to the late endosome, the oncogenic viral form, v-Cbl, shunts internalized receptors to the recycling pathway. (10.1101/gad.12.23.3663) / Genes Dev. by G Levkowitz (1998)
  103. Menzo, S. et al. Transactivation of epidermal growth factor receptor gene by the hepatitis B virus X-gene product. Virology 196, 878–882 (1993). (10.1006/viro.1993.1550) / Virology by S Menzo (1993)
  104. Miller, W. E., Earp, H. S. & Raab-Traub, N. The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J. Virol. 69, 4390–4398 (1995). (10.1128/JVI.69.7.4390-4398.1995) / J. Virol. by WE Miller (1995)
  105. Opgenorth, A., Nation, N., Graham, K. & McFadden, G. Transforming growth factor-α, Shope fibroma virus factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits . Virology 192, 701–709 (1993). (10.1006/viro.1993.1092) / Virology by A Opgenorth (1993)
  106. Adelsman, M. A., Huntley, B. K. & Maihle, N. J. Ligand-independent dimerization of oncogenic v-erbB products involves covalent interactions. J. Virol. 70, 2533–2544 (1996). (10.1128/JVI.70.4.2533-2544.1996) / J. Virol. by MA Adelsman (1996)
  107. Straight, S. W., Herman, B. & McCance, D. J. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J. Virol. 69, 3185–3192 (1995). (10.1128/JVI.69.5.3185-3192.1995) / J. Virol. by SW Straight (1995)
  108. Yamanaka, Y. et al. Co-expression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumour aggressiveness . Anticancer Res. 13, 565– 569 (1993). / Anticancer Res. by Y Yamanaka (1993)
  109. Krane, I. M. & Leder, P. NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 12, 1781– 1788 (1996). / Oncogene by IM Krane (1996)
  110. Gorgoulis, V. et al. Expression of EGF, TGF-α and EGFR in squamous cell lung carcinomas. Anticancer Res. 12, 1183– 1187 (1992). / Anticancer Res. by V Gorgoulis (1992)
  111. Irish, J. C. & Bernstein, A. Oncogenes in head and neck cancer . Laryngoscope 103, 42– 52 (1993). (10.1288/00005537-199301000-00009) / Laryngoscope by JC Irish (1993)
  112. Shintani, S., Funayama, T., Yoshihama, Y., Alcalde, R. E. & Matsumura, T. Prognostic significance of ERBB3 overexpression in oral squamous cell carcinoma. Cancer Lett. 95, 79–83 (1995). (10.1016/0304-3835(95)03866-U) / Cancer Lett. by S Shintani (1995)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 4:48 a.m.)
Deposited 2 years, 3 months ago (May 16, 2023, 9:46 p.m.)
Indexed 5 hours, 57 minutes ago (Sept. 6, 2025, 3:27 p.m.)
Issued 24 years, 7 months ago (Feb. 1, 2001)
Published 24 years, 7 months ago (Feb. 1, 2001)
Published Print 24 years, 7 months ago (Feb. 1, 2001)
Funders 0

None

@article{Yarden_2001, title={Untangling the ErbB signalling network}, volume={2}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/35052073}, DOI={10.1038/35052073}, number={2}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Yarden, Yosef and Sliwkowski, Mark X.}, year={2001}, month=feb, pages={127–137} }