Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Massagué, J. (2000). How cells read TGF-β signals. Nature Reviews Molecular Cell Biology, 1(3), 169–178.

Authors 1
  1. Joan Massagué (first)
References 109 Referenced 1,543
  1. Massagué, J. TGFβ signal transduction. Annu. Rev. Biochem. 67, 753?791 (1998). (10.1146/annurev.biochem.67.1.753) / Annu. Rev. Biochem. by J Massagué (1998)
  2. Schier, A. F. & Shen, M. M. Nodal signalling in vertebrate development . Nature 403, 385?389 (2000). (10.1038/35000126) / Nature by AF Schier (2000)
  3. Whitman, M. SMADs and early developmental signaling by the TGFβ superfamily. Genes Dev. 12, 2445?2462 (1998). (10.1101/gad.12.16.2445) / Genes Dev. by M Whitman (1998)
  4. Massagué, J., Blain, S. W. & Lo, R. S. TGF-β signaling in growth control, cancer and heritable disorders. Cell 103, 295? 309 (2000). (10.1016/S0092-8674(00)00121-5) / Cell by J Massagué (2000)
  5. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massagué, J. Mechanism of activation of the TGF-β receptor. Nature 370, 341?347 ( 1994).Elucidation of the mechanisms of receptor activation based on a combined biochemical and genetic approach. (10.1038/370341a0) / Nature by JL Wrana (1994)
  6. Wieser, R., Wrana, J. L. & Massagué, J. GS domain mutations that constitutively activate TβR-I, the downstream signaling component in the TGF-β receptor complex. EMBO J. 14, 2199?2208 ( 1995). (10.1002/j.1460-2075.1995.tb07214.x) / EMBO J. by R Wieser (1995)
  7. Lo, R. S. & Massagué, J. Ubiquitin-dependent degradation of TGF-β-activated SMAD2. Nature Cell Biol. 1, 472?478 (1999). (10.1038/70258) / Nature Cell Biol. by RS Lo (1999)
  8. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687?693 (1999). (10.1038/23293) / Nature by H Zhu (1999)
  9. Raftery, L. A. & Sutherland, D. J. TGF-β family signal transduction in Drosophila development: from Mad to SMADs. Dev. Biol. 210, 251?268 ( 1999).A chronicle of the discovery of MAD, the founding member of the SMAD family. (10.1006/dbio.1999.9282) / Dev. Biol. by LA Raftery (1999)
  10. Xu, L., Chen, Y. G. & Massagué, J. The nuclear import function of SMAD2 is masked by SARA and unmasked by TGFβ-dependent phosphorylation. Nature Cell Biol. 2, 559?562 ( 2000). (10.1038/35019649) / Nature Cell Biol. by L Xu (2000)
  11. Hahn, S. A. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350? 353 (1996). (10.1126/science.271.5247.350) / Science by SA Hahn (1996)
  12. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGFβ signalling pathways . Nature 383, 832?836 (1996).Reveals the role of SMAD4 as a shared partner of receptor-activated SMADs. (10.1038/383832a0) / Nature by G Lagna (1996)
  13. Chen, X. et al. SMAD4 and FAST-1 in the assembly of activin-responsive factor . Nature 389, 85?89 (1997).Delineates the role of FAST as a SMAD DNA-binding cofactor (10.1038/38008) / Nature by X Chen (1997)
  14. Liu, F., Pouponnot, C. & Massagué, J. Dual role of the SMAD4/DPC4 tumor suppressor in TGFβ-inducible transcriptional responses. Genes Dev. 11, 3157?3167 (1997). (10.1101/gad.11.23.3157) / Genes Dev. by F Liu (1997)
  15. de Caestecker, M. P. et al. The SMAD4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J. Biol. Chem. 275 , 2115?2122 (2000). (10.1074/jbc.275.3.2115) / J. Biol. Chem. by MP de Caestecker (2000)
  16. Janknecht, R., Wells, N. J. & Hunter, T. TGF-β-stimulated cooperation of SMAD proteins with the coactivators CBP/p300. Genes Dev. 12, 2114?2119 (1998). (10.1101/gad.12.14.2114) / Genes Dev. by R Janknecht (1998)
  17. Massagué, J. & Wotton, D. Transcriptional control by the TGF?β/SMAD signaling system. EMBO J. 19, 1745?1754 ( 2000). (10.1093/emboj/19.8.1745) / EMBO J. by J Massagué (2000)
  18. Yahata, T. et al. The MSG1 non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional link to the SMAD transcription factors . J. Biol. Chem. 275, 8825? 8834 (2000). (10.1074/jbc.275.12.8825) / J. Biol. Chem. by T Yahata (2000)
  19. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. L. SARA, a FYVE domain protein that recruits SMAD2 to the TGFβ receptor. Cell 95, 779?791 (1998).Identification of a cytoplasmic regulator of SMAD movement to TGF-β receptors. (10.1016/S0092-8674(00)81701-8) / Cell by T Tsukazaki (1998)
  20. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin-α. Cell 94, 193?204 ( 1998). (10.1016/S0092-8674(00)81419-1) / Cell by E Conti (1998)
  21. Xiao, Z., Liu, X. & Lodish, H. F. Importin-β mediates nuclear translocation of SMAD 3. J. Biol. Chem. 275, 23425? 23428 (2000). (10.1074/jbc.C000345200) / J. Biol. Chem. by Z Xiao (2000)
  22. Morén, A., Itoh, S., Moustakas, A., Dijke, P. & Heldin, C. H. Functional consequences of tumorigenic missense mutations in the amino-terminal domain of SMAD4. Oncogene 19, 4396?4404 (2000). (10.1038/sj.onc.1203798) / Oncogene by A Morén (2000)
  23. Jones, J. B. & Kern, S. E. Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4. Nucleic Acids Res. 28, 2363?2368 (2000). (10.1093/nar/28.12.2363) / Nucleic Acids Res. by JB Jones (2000)
  24. Shi, Y. et al. Crystal structure of a SMAD MH1 domain bound to DNA: Insights on DNA-binding in TGF-β signaling. Cell 94, 585?594 (1998). (10.1016/S0092-8674(00)81600-1) / Cell by Y Shi (1998)
  25. Watanabe, M., Masuyama, N., Fukuda, M. & Nishida, E. Regulation of intracellular dynamics of SMAD4 by its leucine-rich nuclear export signal . EMBO Rep. 1, 176?182 (2000). (10.1093/embo-reports/kvd029) / EMBO Rep. by M Watanabe (2000)
  26. Masuyama, N., Hanafusa, H., Kusakabe, M., Shibuya, H. & Nishida, E. Identification of two SMAD4 proteins in Xenopus. Their common and distinct properties. J. Biol. Chem. 274, 12163?12170 ( 1999). (10.1074/jbc.274.17.12163) / J. Biol. Chem. by N Masuyama (1999)
  27. Chen, Y. G. et al. Determinants of specificity in TGF-β signal transduction . Genes Dev. 12, 2144?2152 (1998). (10.1101/gad.12.14.2144) / Genes Dev. by YG Chen (1998)
  28. Graff, J. M., Bansal, A. & Melton, D. A. Xenopus Mad proteins transduce distinct subsets of signals for the TGF-β superfamily. Cell 85, 479?487 (1996).The opposing but complementary roles of SMAD1 and SMAD2 are revealed. (10.1016/S0092-8674(00)81249-0) / Cell by JM Graff (1996)
  29. Baker, J. & Harland, R. M. A novel mesoderm inducer, mMadr-2, functions in the activin signal transduction pathway. Genes Dev. 10, 1880?1889 ( 1996). (10.1101/gad.10.15.1880) / Genes Dev. by J Baker (1996)
  30. Rodriguez Esteban, C. et al. The novel Cer-like protein Caronte mediates the establishment of embryonic left?right asymmetry. Nature 401 , 243?251 (1999). (10.1038/45738) / Nature by C Rodriguez Esteban (1999)
  31. Yokouchi, Y., Vogan, K. J., Pearse, R. V. & Tabin, C. J. Antagonistic signaling by Caronte, a novel Cerberus-related gene, establishes left?right asymmetric gene expression. Cell 98 , 573?583 (1999). (10.1016/S0092-8674(00)80045-8) / Cell by Y Yokouchi (1999)
  32. Saijoh, Y. et al. Left?right assymetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2 . Mol. Cell 5, 35?47 (2000).References 31 and 32 report on regulation of BMP activity by Hedgehog in the extracellular space. (10.1016/S1097-2765(00)80401-3) / Mol. Cell by Y Saijoh (2000)
  33. Feng, X. H. & Derynck, R. A kinase subdomain of transforming growth factor-β (TGF-β) type I receptor determines the TGF-β intracellular signaling activity. EMBO J. 16, 3912?3922 (1997). (10.1093/emboj/16.13.3912) / EMBO J. by XH Feng (1997)
  34. Lo, R. S., Chen, Y. G., Shi, Y. G., Pavletich, N. & Massagué, J. The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-β receptors. EMBO J. 17, 996?1005 ( 1998). (10.1093/emboj/17.4.996) / EMBO J. by RS Lo (1998)
  35. Yagi, K. et al. Alternatively spliced variant of SMAD2 lacking exon 3. Comparison with wild-type SMAD2 and SMAD3. J. Biol.Chem. 274, 703?709 (1999). (10.1074/jbc.274.2.703) / J. Biol.Chem. by K Yagi (1999)
  36. Ashcroft, G. S. et al. Mice lacking SMAD3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biol. 1, 260?266 (1999). (10.1038/12971) / Nature Cell Biol. by GS Ashcroft (1999)
  37. Denissova, N. G., Pouponnot, C., Long, J., He, D. & Liu, F. Transforming growth factor β-inducible independent binding of SMAD to the SMAD7 promoter. Proc. Natl Acad. Sci. USA 97, 6397?6402 (2000). (10.1073/pnas.090099297) / Proc. Natl Acad. Sci. USA by NG Denissova (2000)
  38. Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP?SMAD and Olf signaling pathways. Cell 100 , 229?240 (2000). (10.1016/S0092-8674(00)81561-5) / Cell by A Hata (2000)
  39. Germain, S., Howell, M., Esslemont, G. M. & Hill, C. S. Homeodomain and winged-helix transcription factors recruit activated SMADs to distinct promoter elements via a common SMAD interaction motif. Genes Dev. 14, 435?451 ( 2000). (10.1101/gad.14.4.435) / Genes Dev. by S Germain (2000)
  40. Yeo, C. Y., Chen, X. & Whitman, M. The role of FAST-1 and SMADs in transcriptional regulation by activin during early Xenopus embryogenesis. J. Biol. Chem. 274, 26584?26590 ( 1999). (10.1074/jbc.274.37.26584) / J. Biol. Chem. by CY Yeo (1999)
  41. Hua, X., Miller, Z. A., Wu, G., Shi, Y. & Lodish, H. F. Specificity in transforming growth factor β-induced transcription of the plasminogen activator inhibitor-1 gene: interactions of promoter DNA, transcription factor muE3, and SMAD proteins. Proc. Natl Acad. Sci. USA 96, 13130? 13135 (1999). (10.1073/pnas.96.23.13130) / Proc. Natl Acad. Sci. USA by X Hua (1999)
  42. Chen, X., Rubock, M. J. & Whitman, M. A transcriptional partner of MAD proteins in TGF-β signalling. Nature 383, 691? 696 (1996). (10.1038/383691a0) / Nature by X Chen (1996)
  43. Zhang, Y., Feng, X. H. & Derynck, R. SMAD3 and SMAD4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 394, 909?913 (1998). (10.1038/29814) / Nature by Y Zhang (1998)
  44. Tsuji, K., Ito, Y. & Noda, M. Expression of the PEBP2αA/AML3/CBFA1 gene is regulated by BMP4/7 heterodimer and its overexpression suppresses type I collagen and osteocalcin gene expression in osteoblastic and nonosteoblastic mesenchymal cells. Bone 22, 87?92 (1998). (10.1016/S8756-3282(97)00267-6) / Bone by K Tsuji (1998)
  45. Pardali, E. et al. SMAD and AML proteins synergistically confer transforming growth factor β1 responsiveness to human germ-line IgA genes. J. Biol. Chem. 275, 3552?3560 (2000). (10.1074/jbc.275.5.3552) / J. Biol. Chem. by E Pardali (2000)
  46. Hanai, J. et al. Interaction and functional cooperation of PEBP2/CBF with SMADs. Synergistic induction of the immunoglobulin germline Cα promoter. J. Biol. Chem. 274, 31577?31582 (1999). (10.1074/jbc.274.44.31577) / J. Biol. Chem. by J Hanai (1999)
  47. Nishita, M. et al. Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer. Nature 403 , 781?785 (2000). Evidence for direct cooperation between mediators of the TGF-β and Wnt pathways. (10.1038/35001602) / Nature by M Nishita (2000)
  48. Labbe, E., Letamendia, A. & Attisano, L. Association of SMADs with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-β and wnt pathways. Proc. Natl Acad. Sci. USA 97, 8358?8363 ( 2000). (10.1073/pnas.150152697) / Proc. Natl Acad. Sci. USA by E Labbe (2000)
  49. Wotton, D., Lo, R. S., Lee, S. & Massagué, J. A SMAD transcriptional corepressor. Cell 97, 29 ?39 (1999).The first SMAD transcriptional corepressor and its competition with co-activators. (10.1016/S0092-8674(00)80712-6) / Cell by D Wotton (1999)
  50. Luo, K. et al. The ski oncoprotein interacts with the SMAD proteins to repress TGF-β signaling. Genes Dev. 13, 2196 ?2206 (1999). (10.1101/gad.13.17.2196) / Genes Dev. by K Luo (1999)
  51. Sun, Y., Liu, X., Ng-Eaton, E., Lodish, H. F. & Weinberg, R. A. SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor-β signaling. Proc. Natl Acad. Sci. USA 96, 12442?12447 (1999).References 50 and 51 report on the proto-oncogene SKI as a corepressor of SMADs in the basal state. (10.1073/pnas.96.22.12442) / Proc. Natl Acad. Sci. USA by Y Sun (1999)
  52. Perou, C. M. et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl Acad. Sci. USA 96, 9212?9217 (1999). (10.1073/pnas.96.16.9212) / Proc. Natl Acad. Sci. USA by CM Perou (1999)
  53. Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q. & Luo, K. Negative feedback regulation of TGF-b signaling by the SnoN oncoprotein. Science 286, 771?774 ( 1999). (10.1126/science.286.5440.771) / Science by SL Stroschein (1999)
  54. Lo, R. S., Wotton, D. & Massagué, J. EGF signaling via Ras stabilizes the SMAD transcriptional corepressor TGIF. EMBO J. (in the press).
  55. Gripp, K. W. et al. Mutations in TGIF cause holoprosencephaly and link nodal signalling to human neural axis determination. Nature Genet. 25 , 205?208 (2000). (10.1038/76074) / Nature Genet. by KW Gripp (2000)
  56. Sampath, K. et al. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395, 185 ?189 (1998). (10.1038/26020) / Nature by K Sampath (1998)
  57. Nomura, M. & Li, E. SMAD2 role in mesoderm formation, left?right patterning and craniofacial development. Nature 393 , 786?790 (1998). (10.1038/31693) / Nature by M Nomura (1998)
  58. Hocevar, B. A., Brown, T. L. & Howe, P. H. TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, SMAD4-independent pathway. EMBO J. 18, 1345?1356 ( 1999).An example of rapid activation of JNK by TGF-β and its effects on gene expression. (10.1093/emboj/18.5.1345) / EMBO J. by BA Hocevar (1999)
  59. Hanafusa, H. et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J. Biol. Chem. 274, 27161?27167 (1999). (10.1074/jbc.274.38.27161) / J. Biol. Chem. by H Hanafusa (1999)
  60. Sano, Y. et al. ATF-2 is a common nuclear target of SMAD and TAK1 pathways in transforming growth factor-β signaling. J. Biol. Chem. 274, 8949?8957 (1999). (10.1074/jbc.274.13.8949) / J. Biol. Chem. by Y Sano (1999)
  61. Takatsu, Y. et al. TAK1 participates in c-Jun N-terminal kinase signaling during Drosophila development. Mol. Cell. Biol. 20, 3015?3026 (2000). (10.1128/MCB.20.9.3015-3026.2000) / Mol. Cell. Biol. by Y Takatsu (2000)
  62. Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272, 1179? 1182 (1996). (10.1126/science.272.5265.1179) / Science by H Shibuya (1996)
  63. Yamaguchi, K. et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1?TAK1 in the BMP signaling pathway . EMBO J. 18, 179?187 (1999). (10.1093/emboj/18.1.179) / EMBO J. by K Yamaguchi (1999)
  64. Engel, M. E., McDonnell, M. A., Law, B. K. & Moses, H. L. Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J. Biol. Chem. 274, 37413 ?37420 (1999). (10.1074/jbc.274.52.37413) / J. Biol. Chem. by ME Engel (1999)
  65. Wong, C. et al. SMAD3?SMAD4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor-β. Mol. Cell. Biol. 19, 1821?1830 (1999). (10.1128/MCB.19.3.1821) / Mol. Cell. Biol. by C Wong (1999)
  66. Massagué, J. & Chen, Y. G. Controlling TGF-β signaling. Genes Dev. 14, 627? 644 (2000). (10.1101/gad.14.6.627) / Genes Dev. by J Massagué (2000)
  67. ten Dijke, P., Miyazono, K. & Heldin, C. H. Signaling inputs converge on nuclear effectors in TGF-β signaling. Trends Biochem. Sci. 25, 64?70 (2000). (10.1016/S0968-0004(99)01519-4) / Trends Biochem. Sci. by P ten Dijke (2000)
  68. Tanimoto, H., Itoh, S., ten Dijke, P. & Tabata, T. Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5, 59?71 ( 2000).Crosstalk between the Hedgehog and the BMP system at the level of Decapentaplegic receptors. (10.1016/S1097-2765(00)80403-7) / Mol. Cell by H Tanimoto (2000)
  69. Hayashi, H. et al. The MAD-related protein SMAD7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89, 1165?1173 ( 1997). (10.1016/S0092-8674(00)80303-7) / Cell by H Hayashi (1997)
  70. Nakao, A. et al. Identification of SMAD7, a TGFβ-inducible antagonist of TGF-β signaling. Nature 389, 631? 635 (1997).First evidence of antagonistic SMADs relaying feedback signals. (10.1038/39369) / Nature by A Nakao (1997)
  71. Ulloa, L., Doody, J. & Massagué, J. Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway. Nature 397, 710?713 (1999). Negative regulation of the SMAD pathway by the STAT pathway. (10.1038/17826) / Nature by L Ulloa (1999)
  72. Bitzer, M. et al. A mechanism of suppression of TGF-β/SMAD signaling by NFκB/RelA. Genes Dev. 14, 187? 197 (2000). (10.1101/gad.14.2.187) / Genes Dev. by M Bitzer (2000)
  73. Kretzschmar, M., Doody, J. & Massagué, J. Opposing BMP and EGF signalling pathway converge on the TGFβ family mediator SMAD1. Nature 389, 618?622 (1997).Negative effects of Ras/ERK pathway on SMAD function. (10.1038/39348) / Nature by M Kretzschmar (1997)
  74. Kretzschmar, M., Doody, J., Timokhina, I. & Massagué, J. A mechanism of repression of TGF-β/SMAD signaling by oncogenic ras. Genes Dev. 13, 804?816 ( 1999). (10.1101/gad.13.7.804) / Genes Dev. by M Kretzschmar (1999)
  75. Halfon, M. S. et al. Ras pathway specificity is determined by the integration of multiple signal-activated and tissue-restricted transcription factors. Cell 103, 63?74 ( 2000). (10.1016/S0092-8674(00)00105-7) / Cell by MS Halfon (2000)
  76. Onichtchouk, D. et al. Silencing of TGF-β signalling by the pseudoreceptor BAMBI . Nature 401, 480?485 (1999). (10.1038/46794) / Nature by D Onichtchouk (1999)
  77. Tsuneizumi, K. et al. Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389, 627?631 (1997). (10.1038/39362) / Nature by K Tsuneizumi (1997)
  78. Hata, A., Lagna, G., Massagué, J. & Hemmati-Brivanlou, A. SMAD6 inhibits BMP/SMAD1 signaling by specifically competing with the SMAD4 tumor suppressor. Genes Dev. 12, 186? 197 (1998). (10.1101/gad.12.2.186) / Genes Dev. by A Hata (1998)
  79. Yamada, M., Szendro, P. I., Prokscha, A., Schwartz, R. J. & Eichele, G. Evidence for a role of SMAD6 in chick cardiac development. Dev. Biol. 215, 48?61 (1999). (10.1006/dbio.1999.9419) / Dev. Biol. by M Yamada (1999)
  80. Zhao, J., Shi, W., Chen, H. & Warburton, D. SMAD7 and SMAD6 differentially modulate transforming growth factor-β-induced inhibition of embryonic lung morphogenesis. J. Biol. Chem. 275 , 23992?23997 (2000). (10.1074/jbc.M002433200) / J. Biol. Chem. by J Zhao (2000)
  81. Galvin, K. M. et al. A role for SMAD6 in development and homeostasis of the cardiovascular system. Nature Genet. 24, 171? 174 (2000). (10.1038/72835) / Nature Genet. by KM Galvin (2000)
  82. Imamura, T. et al. SMAD6 inhibits signalling by the TGFβ superfamily. Nature 389, 622?626 ( 1997). (10.1038/39355) / Nature by T Imamura (1997)
  83. López-Casillas, F., Wrana, J. L. & Massagué, J. Betaglycan presents ligand to the TGF-β signaling receptor. Cell 73, 1435? 1444 (1993). (10.1016/0092-8674(93)90368-Z) / Cell by F López-Casillas (1993)
  84. Lewis, K. A. et al. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 404, 411? 414 (2000).The surprising versatility of a TGF-β accessory receptor is revealed. (10.1038/35006129) / Nature by KA Lewis (2000)
  85. Zúñiga, A., Haramis, A. P., McMahon, A. P. & Zeller, R. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401, 598? 602 (1999). (10.1038/44157) / Nature by A Zúñiga (1999)
  86. Gazzerro, E., Gangji, V. & Canalis, E. Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J. Clin. Invest. 102, 2106?2114 (1998). (10.1172/JCI3459) / J. Clin. Invest. by E Gazzerro (1998)
  87. Bilezikjian, L. M., Corrigan, A. Z., Blount, A. L. & Vale, W. W. Pituitary follistatin and inhibin subunit messenger ribonucleic acid levels are differentially regulated by local and hormonal factors. Endocrinology 137, 4277?4284 ( 1996). (10.1210/endo.137.10.8828487) / Endocrinology by LM Bilezikjian (1996)
  88. Crawford, S. E. et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93, 1159? 1170 (1998). (10.1016/S0092-8674(00)81460-9) / Cell by SE Crawford (1998)
  89. Green, J. B. A., New, H. V. & Smith, J. C. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71, 731? 739 (1992). (10.1016/0092-8674(92)90550-V) / Cell by JBA Green (1992)
  90. Dyson, S. & Gurdon, J. B. The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93, 557?568 ( 1998).A saga showing the morphogenetic potential of activin signalling during Xenopus embryogenesis. (10.1016/S0092-8674(00)81185-X) / Cell by S Dyson (1998)
  91. Zhao, J. & Buick, R. N. Regulation of transforming growth factor-β receptors in H-ras oncogene-transformed rat intestinal epithelial cells. Cancer Res. 55, 6181? 6188 (1995). / Cancer Res. by J Zhao (1995)
  92. Cornell, R. A. & Kimelman, D. Activin-mediated mesoderm induction requires FGF. Development 120, 453?462 (1994). (10.1242/dev.120.2.453) / Development by RA Cornell (1994)
  93. LaBonne, C. & Whitman, M. Mesoderm induction by activin requires FGF-mediated intracellular signals. Development 120 , 463?472 (1994). (10.1242/dev.120.2.463) / Development by C LaBonne (1994)
  94. Oft, M. et al. TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 10, 2462?2477 ( 1996).TGF-β is shown to instigate tumorigenic behaviour in transformed mammary cells. (10.1101/gad.10.19.2462) / Genes Dev. by M Oft (1996)
  95. Nakashima, K. et al. Synergistic signaling in fetal brain by STAT3?SMAD1 complex bridged by p300. Science 284, 479 ?482 (1999). (10.1126/science.284.5413.479) / Science by K Nakashima (1999)
  96. Shi, M. J. & Stavnezer, J. CBF α3 (AML2) is induced by TGF-β1 to bind and activate the mouse germline Igα promoter . J. Immunol. 161, 6751? 6760 (1998). (10.4049/jimmunol.161.12.6751) / J. Immunol. by MJ Shi (1998)
  97. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765?771 ( 1997). (10.1016/S0092-8674(00)80259-7) / Cell by F Otto (1997)
  98. Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755?764 ( 1997). (10.1016/S0092-8674(00)80258-5) / Cell by T Komori (1997)
  99. Lee, B. et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nature Genet. 16, 307?310 ( 1997). (10.1038/ng0797-307) / Nature Genet. by B Lee (1997)
  100. Mundlos, S. et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773? 779 (1997). (10.1016/S0092-8674(00)80260-3) / Cell by S Mundlos (1997)
  101. Laurent, M. N., Blitz, I. L., Hashimoto, C., Rothbacher, U. & Cho, K. W. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann's organizer. Development 124, 4905? 4916 (1997). (10.1242/dev.124.23.4905) / Development by MN Laurent (1997)
  102. Henry, G. L. & Melton, D. A. Mixer, a homeobox gene required for endoderm development. Science 281, 91?96 (1998). (10.1126/science.281.5373.91) / Science by GL Henry (1998)
  103. Huse, M., Chen, Y. G., Massagué, J. & Kuriyan, J. Crystal structure of the cytoplasmic domain of the type I TGF-β receptor in complex with FKBP12. Cell 96, 425? 436 (1999). (10.1016/S0092-8674(00)80555-3) / Cell by M Huse (1999)
  104. Shi, Y., Hata, A., Lo, R. S., Massagué, J. & Pavletich, N. P. A structural basis for mutational inactivation of the tumour suppressor SMAD4. Nature 388, 87?93 (1997). (10.1038/40431) / Nature by Y Shi (1997)
  105. Wu, G. et al. Structural basis of SMAD2 recognition by the SMAD Anchor for Receptor Activation. Science 287, 92? 97 (2000). (10.1126/science.287.5450.92) / Science by G Wu (2000)
  106. Kim, J., Johnson, K., Chen, H. J., Carroll, S. & Laughon, A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304?308 (1997). (10.1038/40906) / Nature by J Kim (1997)
  107. Liu, F. et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620? 623 (1996). (10.1038/381620a0) / Nature by F Liu (1996)
  108. Dou, C. et al. BF-1 interferes with transforming growth factor-β signaling by associating with SMAD partners. Mol. Cell. Biol. 20, 6201?6211 (2000). (10.1128/MCB.20.17.6201-6211.2000) / Mol. Cell. Biol. by C Dou (2000)
  109. Kim, R. H. et al. A novel SMAD nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-β signal transduction. Genes Dev. 14, 1605?1616 (2000). (10.1101/gad.14.13.1605) / Genes Dev. by RH Kim (2000)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 4:48 a.m.)
Deposited 2 years, 3 months ago (May 16, 2023, 10:14 p.m.)
Indexed 38 minutes ago (Sept. 7, 2025, 5:16 a.m.)
Issued 24 years, 9 months ago (Dec. 1, 2000)
Published 24 years, 9 months ago (Dec. 1, 2000)
Published Print 24 years, 9 months ago (Dec. 1, 2000)
Funders 0

None

@article{Massagu__2000, title={How cells read TGF-β signals}, volume={1}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/35043051}, DOI={10.1038/35043051}, number={3}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Massagué, Joan}, year={2000}, month=dec, pages={169–178} }