Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Hou, S., Larsen, R. W., Boudko, D., Riley, C. W., Karatan, E., Zimmer, M., Ordal, G. W., & Alam, M. (2000). Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature, 403(6769), 540–544.

Authors 8
  1. Shaobin Hou (first)
  2. Randy W. Larsen (additional)
  3. Dmitri Boudko (additional)
  4. Charles W. Riley (additional)
  5. Ece Karatan (additional)
  6. Mike Zimmer (additional)
  7. George W. Ordal (additional)
  8. Maqsudul Alam (additional)
References 28 Referenced 230
  1. Wakabayashi, S., Matsubara, H. & Webster, D. A. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322, 481–483 (1986). (10.1038/322481a0) / Nature by S Wakabayashi (1986)
  2. Potts, M., Angeloni, S. V., Ebel, R. E. & Bassam, D. Myoglobin in a Cyanobacterium. Science 256, 1690–1691 (1992). (10.1126/science.256.5064.1690) / Science by M Potts (1992)
  3. Anderson, C. R., Jensen, E. O., Llewellyn, D. J., Dennis, E. S. & Peacock, W. J. A new hemoglobin gene from soybean: a role for hemoglobin in all plants. Proc. Natl Acad. Sci. USA. 93, 5682–5687 (1996). (10.1073/pnas.93.12.5682) / Proc. Natl Acad. Sci. USA. by CR Anderson (1996)
  4. Hardison, R. Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J. Exp. Biol. 201, 1099–1117 (1998). (10.1242/jeb.201.8.1099) / J. Exp. Biol. by R Hardison (1998)
  5. Suzuki, T. & Imai, K. Evolution of myoglobin. Cell Mol. Life Sci. 54, 979–1004 (1998). (10.1007/s000180050227) / Cell Mol. Life Sci. by T Suzuki (1998)
  6. Hardison, R. The Evolution of Hemoglobin. Am. Sci. 87, 126–137 (1999). (10.1511/1999.20.809) / Am. Sci. by R Hardison (1999)
  7. Rodgers, K. R. Heme-based sensors in biological systems. Curr. Opin. Chem. Biol. 3, 158–167 (1999). (10.1016/S1367-5931(99)80028-3) / Curr. Opin. Chem. Biol. by KR Rodgers (1999)
  8. Zhang, W., Brooun, A., McCandless, J., Banda, P. & Alam, M. Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins. Proc. Natl Acad. Sci. USA 93, 4649–4654 (1996). (10.1073/pnas.93.10.4649) / Proc. Natl Acad. Sci. USA by W Zhang (1996)
  9. Kunst, F. et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256 (1997). (10.1038/36786) / Nature by F Kunst (1997)
  10. Boyd, A., Kendall, K. & Simon, M. I. Structure of the serine chemoreceptor in Escherichia coli. Nature 301, 623–626 (1983). (10.1038/301623a0) / Nature by A Boyd (1983)
  11. Bashford, D., Chothia, C. & Lesk, A. M. Determinants of a protein fold. Unique features of the globin amino acid sequences. J. Mol. Biol. 196, 199–216 (1987). (10.1016/0022-2836(87)90521-3) / J. Mol. Biol. by D Bashford (1987)
  12. Vinogradov, S. N., Walz, D. A. & Pohajdak, B. Organization of non-vertebrate globin genes. Comp. Biochem. Physiol. 103, 759–773 (1992). / Comp. Biochem. Physiol. by SN Vinogradov (1992)
  13. Ihara, K. & Mukohata, Y. The ATP synthase of Halobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits. Arch. Biochem. Biophys. 286, 111–116 (1991). (10.1016/0003-9861(91)90015-B) / Arch. Biochem. Biophys. by K Ihara (1991)
  14. Brooun, A. Primary Structures and Functional Analysis of the Four Transducers: HtrIV, HtrVIII, HtrX and HtrXI from the Archaeon Halobacterium salinarum. Thesis, Univ. Hawaii (1997). / Primary Structures and Functional Analysis of the Four Transducers: HtrIV, HtrVIII, HtrX and HtrXI from the Archaeon Halobacterium salinarum. by A Brooun (1997)
  15. Brooun, A., Bell, J., Freitas, T., Larsen, R. W. & Alam, M. An archaeal aerotaxis transducer combines subunit I core structures of eukaryotic cyctochrome c oxidase and eubacterial methyl-accepting chemotaxis proteins. J. Bacteriol. 180, 1642–1646 (1998). (10.1128/JB.180.7.1642-1646.1998) / J. Bacteriol. by A Brooun (1998)
  16. Lindbeck, J. C., Goulbourne, E. A., Johnson, M. S. & Taylor, B. L. Aerotaxis in Halobacterium salinarium is methylation-dependent. Microbiology 141, 2945–2953 (1995). (10.1099/13500872-141-11-2945) / Microbiology by JC Lindbeck (1995)
  17. Wong, L. S., Johnson, M. S., Zhulin, I. B. & Taylor, B. L. Role of methylation in aerotaxis in Bacillus subtilis. J. Bacteriol. 177, 3985–3991 (1995). (10.1128/jb.177.14.3985-3991.1995) / J. Bacteriol. by LS Wong (1995)
  18. Taylor, B. L. & Zhulin, I. B. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479–506 (1999). (10.1128/MMBR.63.2.479-506.1999) / Microbiol. Mol. Biol. Rev. by BL Taylor (1999)
  19. Zhulin, I. B. & Taylor, B. L. Correlation of PAS domains with electron transport-associated proteins in completely sequenced microbial genomes. Mol. Microbiol. 29, 1522–1523 (1998). / Mol. Microbiol. by IB Zhulin (1998)
  20. Gilles-Gonzalez, M. A., Ditta, G. S. & Helinski, D. R. A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350, 170–172 (1991). (10.1038/350170a0) / Nature by MA Gilles-Gonzalez (1991)
  21. Monson, E. K., Weinstein, M., Ditta, G. S. & Helinski, D. R. The FixL protein of Rhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc. Natl Acad. Sci. USA 89, 4280–4284 (1992). (10.1073/pnas.89.10.4280) / Proc. Natl Acad. Sci. USA by EK Monson (1992)
  22. Zhulin, I. B., Taylor, B. L. & Dixon, R. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22, 331–333 (1997). (10.1016/S0968-0004(97)01110-9) / Trends Biochem. Sci. by Zhulin, I. B. (1997)
  23. Gong, W. et al. Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc. Natl Acad. Sci. USA 95, 15177–15182 (1998). (10.1073/pnas.95.26.15177) / Proc. Natl Acad. Sci. USA by W Gong (1998)
  24. Rebbapragada, A. et al. The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc. Natl Acad. Sci. USA 94, 10541–10546 (1997). (10.1073/pnas.94.20.10541) / Proc. Natl Acad. Sci. USA by A Rebbapragada (1997)
  25. Bibikov, S. I., Biran, R., Rudd, K. E. & Parkinson, J. S. A signal transducer for aerotaxis in Escherichia coli. J. Bacteriol. 179, 4075–4079 (1997). (10.1128/jb.179.12.4075-4079.1997) / J. Bacteriol. by SI Bibikov (1997)
  26. Vagner, V., Dervyn, E. & Ehrlich, S. D. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097–3104 (1998). (10.1099/00221287-144-11-3097) / Microbiology by V, Vagner (1998)
  27. Leonhardt, H. & Alonso, J. C. Construction of a shuttle vector for inducible gene expression in Escherichia coli and Bacillus subtilis. J. Gen. Microbiol. 134, 605–609 (1988). / J. Gen. Microbiol. by H Leonhardt (1988)
  28. Alam, M. & Hazelbauer, G. L. Structural features of methyl-accepting taxis proteins conserved between archaebacteria and eubacteria revealed by antigenic cross-reation. J. Bacteriol. 173, 5837–5842 (1991). (10.1128/jb.173.18.5837-5842.1991) / J. Bacteriol. by M Alam (1991)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 4:41 a.m.)
Deposited 2 years, 3 months ago (May 16, 2023, 9:46 p.m.)
Indexed 1 month, 3 weeks ago (July 16, 2025, 8:49 a.m.)
Issued 25 years, 7 months ago (Feb. 1, 2000)
Published 25 years, 7 months ago (Feb. 1, 2000)
Published Print 25 years, 7 months ago (Feb. 1, 2000)
Funders 0

None

@article{Hou_2000, title={Myoglobin-like aerotaxis transducers in Archaea and Bacteria}, volume={403}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/35000570}, DOI={10.1038/35000570}, number={6769}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Hou, Shaobin and Larsen, Randy W. and Boudko, Dmitri and Riley, Charles W. and Karatan, Ece and Zimmer, Mike and Ordal, George W. and Alam, Maqsudul}, year={2000}, month=feb, pages={540–544} }