Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D., & Kuriyan, J. (1998). The structural basis of the activation of Ras by Sos. Nature, 394(6691), 337–343.

Authors 4
  1. P. Ann Boriack-Sjodin (first)
  2. S. Mariana Margarit (additional)
  3. Dafna Bar-Sagi (additional)
  4. John Kuriyan (additional)
References 46 Referenced 672
  1. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991). (10.1038/349117a0) / Nature by HR Bourne (1991)
  2. Boguski, M. S. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643–654 (1993). (10.1038/366643a0) / Nature by MS Boguski (1993)
  3. Medema, R. H., de Vries-Smits, A. M., van der Zon, G. C. M., Maassen, J. A. & Bos, J. L. Ras activation by insulin and epidermal growth factor through enhanced exchange of guanine nucleotides on p21ras. Mol. Cell. Biol. 13, 155–162 (1993). (10.1128/MCB.13.1.155) / Mol. Cell. Biol. by RH Medema (1993)
  4. Buday, L. & Downward, J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73, 611–620 (1993). (10.1016/0092-8674(93)90146-H) / Cell by L Buday (1993)
  5. Gale, N. W., Kaplan, S., Lowenstein, E. J., Schlessinger, J. & Bar-Sagi, D. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 363, 88–92 (1993). (10.1038/363088a0) / Nature by NW Gale (1993)
  6. Bar-Sagi, D. The Sos (Son of sevenless) protein. Trends Endocrin. Metab. 5, 165–169 (1994). (10.1016/1043-2760(94)90014-0) / Trends Endocrin. Metab. by D Bar-Sagi (1994)
  7. Schlessinger, J. How receptor tyrosine kinases activate Ras. Trends Biochem. Sci. 18, 273–275 (1994). (10.1016/0968-0004(93)90031-H) / Trends Biochem. Sci. by J Schlessinger (1994)
  8. Yu, H. & Schreiber, S. L. Structure of guanine-nucleotide-exchange factor human Mss4 and identification of its Rab-interacting surface. Nature 376, 788–791 (1995). (10.1038/376788a0) / Nature by H Yu (1995)
  9. Mossessova, E., Gulbis, J. M. & Goldberg, J. Structure of the guanine nucleotide exchange factor Sec7 domain of human Arno and analysis of the interaction with ARF GTPase. Cell 92, 415–423 (1998). (10.1016/S0092-8674(00)80933-2) / Cell by E Mossessova (1998)
  10. Cherfils, J. et al. Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature 392, 101–105 (1998). (10.1038/32210) / Nature by J Cherfils (1998)
  11. Renault, L. et al. The 1.7 Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392, 97–101 (1998). (10.1038/32204) / Nature by L Renault (1998)
  12. Wang, Y., Jiang, Y., Meyering-Voss, M., Sprinzl, M. & Sigler, P. B. Crystal structure of the EF-Tu·EF-Ts complex from Thermus thermophilus. Nat. Struct. Biol. 4, 650–656 (1997). (10.1038/nsb0897-650) / Nat. Struct. Biol. by Y Wang (1997)
  13. Kawashima, T., Berthet-Colominas, C., Wulff, M., Cusack, S. & Leberman, R. The structure of the Escherichia coli EF-Tu-EF-Ts complex at 2.5 Å resolution. Nature 379, 511–518 (1996). (10.1038/379511a0) / Nature by T Kawashima (1996)
  14. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993). (10.1006/jmbi.1993.1489) / J. Mol. Biol. by L Holm (1993)
  15. Chardin, P. et al. Human Sos 1: A gunaine nucleotide exchange factor for Ras that binds to GRB2. Science 260, 1338–1343 (1993). (10.1126/science.8493579) / Science by P Chardin (1993)
  16. Lenzen, C., Cool, R. H., Prinz, H., Kuhlmann, J. & Wittinghofer, A. Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm Biochemistry 37, 7420–7430 (1998). (10.1021/bi972621j) / Biochemistry by C Lenzen (1998)
  17. Lai, C.-C., Boguski, M., Broek, D. & Powers, S. Influence of guanine nucleotides on complex formation between Ras and Cdc25 proteins. Mol. Cell. Biol. 13, 1345–1352 (1993). (10.1128/MCB.13.3.1345) / Mol. Cell. Biol. by C-C Lai (1993)
  18. Mistou, M. Y. et al. Mutations of H-Ras p21 that define important regions for the molecular mechanism of the SDC25 C-domain, a guanine nucleotide dissociation stimulator. EMBO J. 11, 2391–2397 (1992). (10.1002/j.1460-2075.1992.tb05303.x) / EMBO J. by MY Mistou (1992)
  19. Milburn, M. V. et al. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939–945 (1990). (10.1126/science.2406906) / Science by MV Milburn (1990)
  20. Jurnak, F. Structure of the GDP domainof EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science 230, 32–36 (1985). (10.1126/science.3898365) / Science by F Jurnak (1985)
  21. 1. Powers, S., O'Neill, K. & Wigler, M. Dominant yeast and mammalian Ras mutants that interfere with CDC25-dependent activation of wild-type Ras in Saccharomyces cerevisiae. Mol. Cell. Biol. 9, 390–395 (1989). (10.1128/MCB.9.2.390) / Mol. Cell. Biol. by S Powers (1989)
  22. Haney, S. A. & Broach, J. R. Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of Saccharomyces cerevisiae, promotes exchange by stabilizing ras in a nucleotide free state. J. Biol. Chem. 269, 16541–16548 (1994). (10.1016/S0021-9258(19)89422-X) / J. Biol. Chem. by SA Haney (1994)
  23. Klebe, C., Prinz, H., Wittinghofer, A. & Goody, R. S. The kinetic mechanism of Ran-nucleotide exchange catalyzed by RCC1. Biochemistry 34, 12543–12552 (1995). (10.1021/bi00039a008) / Biochemistry by C Klebe (1995)
  24. Verrotti, A. C. et al. Ras residues that are distant from the GDP binding site play a critical role in dissociation factor-stimulated release of GDP. EMBO J. 11, 2855–2862 (1992). (10.1002/j.1460-2075.1992.tb05353.x) / EMBO J. by AC Verrotti (1992)
  25. Segal, M., Willumsen, B. M. & Levitzki, A. Residues crucial for Ras interaction with GDP-GTP exchangers. Proc. Natl Acad. Sci. USA 90, 5564–5568 (1993). (10.1073/pnas.90.12.5564) / Proc. Natl Acad. Sci. USA by M Segal (1993)
  26. Mosteller, R. D., Han, J. & Broek, D. Identification of residues of the H-Ras protein critical for functional interaction with guanine nucleotide exchange factors. Mol. Cell. Biol. 14, 1104–1112 (1994). (10.1128/MCB.14.2.1104) / Mol. Cell. Biol. by RD Mosteller (1994)
  27. Segal, M., Marbach, I., Willumsen, B. M. & Levitzki, A. Two distinct regions of Ras participate in functional interaction with GDP-GTP exchangers. Eur. J. Biochem. 228, 96–101 (1995). (10.1111/j.1432-1033.1995.0096o.x) / Eur. J. Biochem. by M Segal (1995)
  28. Leonardsen, L., DeClue, J. E., Lybaek, H., Lowy, D. R. & Willumsen, B. M. Rasp21 sequences opposite the nucleotide binding pocket are required for GRF-mediated nucleotide release. Oncogene 13, 2177–2187 (1996). / Oncogene by L Leonardsen (1996)
  29. Crechet, J.-B., Bernardi, A. & Parmeggiani, A. Distal switch II region of Ras2p is required for interaction with guanine nucleotide exchange factor. J. Biol. Chem. 271, 17234–17240 (1996). (10.1074/jbc.271.29.17234) / J. Biol. Chem. by J-B Crechet (1996)
  30. Quilliam, L. A. et al. Involvement of the switch 2 domain of Ras in its interaction with guanine nucleotide exchange factors. J. Biol. Chem. 271, 11076–11082 (1996). (10.1074/jbc.271.19.11076) / J. Biol. Chem. by LA Quilliam (1996)
  31. 1. Feig, L. A. & Cooper, G. M. Inhibition of NIH 3T3 cell proliferation by a mutant Ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8, 3235–3243 (1988). (10.1128/MCB.8.8.3235) / Mol. Cell. Biol. by LA Feig (1988)
  32. 2. Chen, S.-Y., Huff, S. Y., Lai, C.-C., Der, C. J. & Powers, S. Ras-15A protein shares highly similar dominant-negative biological properties with Ras-17N and forms a stable, guanine-nucleotide resistant complex with CDC25 exchange factor. Oncogene 9, 2691–2698 (1994). / Oncogene by S-Y Chen (1994)
  33. Powers, S., Gonzales, E., Christensen, T., Cubert, J. & Broek, D. Functional cloning of Bud5, a Cdc25-related gene from S. cerevisiae that can suppress a dominant-negative Ras2 mutant. Cell 65, 1225–1231 (1991). (10.1016/0092-8674(91)90017-S) / Cell by S Powers (1991)
  34. Westbrook, E. M. & Naday, I. Charge-coupled device-based area detectors. Methods Enzymol. 276, 244–268 (1997). (10.1016/S0076-6879(97)76063-4) / Methods Enzymol. by EM Westbrook (1997)
  35. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation model Mehtods Enzymol. 276, 307–326 (1997). (10.1016/S0076-6879(97)76066-X) / Mehtods Enzymol. by Z Otwinowski (1997)
  36. CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994). (10.1107/S0907444994003112)
  37. Cowtan, K. Joint CCP4 and ESF-EACBM Newslett. Protein Crystallogr. 31, 34–38 (1994). / Joint CCP4 and ESF-EACBM Newslett. Protein Crystallogr. by K Cowtan (1994)
  38. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991). (10.1107/S0108767390010224) / Acta Crystallogr. A by TA Jones (1991)
  39. Pai, E. F. et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359 (1990). (10.1002/j.1460-2075.1990.tb07409.x) / EMBO J. by EF Pai (1990)
  40. Bernstein, F. C. et al. The protein data bank: a computer-based archival file for macromolecular structures. Arch. Biochem. Biophys. 185, 584–591 (1978). (10.1016/0003-9861(78)90204-7) / Arch. Biochem. Biophys. by FC Bernstein (1978)
  41. 1. Brünger, A. T. et al. Crystallography and NMR system (CNS): A new software suite for macromolecular structure determination. Acta Crystallogr. D (in the press).
  42. 2. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986). (10.1107/S0108767386099622) / Acta Crystallogr. A by RJ Read (1986)
  43. 3. Brünger, A. T., Adams, P. D. & Rice, L. M. New applications of simulated annealing in X-ray crystallography and solution NMR. Structure 5, 325–336 (1997). (10.1016/S0969-2126(97)00190-1) / Structure by AT Brünger (1997)
  44. 4. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991). (10.1107/S0021889891007240) / J. Appl. Crystallogr. by M Carson (1991)
  45. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991). (10.1002/prot.340110407) / Proteins Struct. Funct. Genet. by A Nicholls (1991)
  46. Pai, E. F. et al. Structure of the guanine-nucleotide-binding domain of Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209–214 (1989). (10.1038/341209a0) / Nature by EF Pai (1989)
Dates
Type When
Created 23 years ago (July 26, 2002, 4:39 a.m.)
Deposited 2 years, 3 months ago (May 16, 2023, 8:38 p.m.)
Indexed 2 hours, 2 minutes ago (Aug. 21, 2025, 2:13 p.m.)
Issued 27 years, 1 month ago (July 1, 1998)
Published 27 years, 1 month ago (July 1, 1998)
Published Print 27 years, 1 month ago (July 1, 1998)
Funders 0

None

@article{Boriack_Sjodin_1998, title={The structural basis of the activation of Ras by Sos}, volume={394}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/28548}, DOI={10.1038/28548}, number={6691}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Boriack-Sjodin, P. Ann and Margarit, S. Mariana and Bar-Sagi, Dafna and Kuriyan, John}, year={1998}, month=jul, pages={337–343} }