Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Lidzey, D. G., Bradley, D. D. C., Skolnick, M. S., Virgili, T., Walker, S., & Whittaker, D. M. (1998). Strong exciton–photon coupling in an organic semiconductor microcavity. Nature, 395(6697), 53–55.

Authors 6
  1. D. G. Lidzey (first)
  2. D. D. C. Bradley (additional)
  3. M. S. Skolnick (additional)
  4. T. Virgili (additional)
  5. S. Walker (additional)
  6. D. M. Whittaker (additional)
References 30 Referenced 810
  1. Weisbuch, C. et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992). (10.1103/PhysRevLett.69.3314) / Phys. Rev. Lett. by C Weisbuch (1992)
  2. Houdré, R. et al. Room-temperature cavity polaritons in a semiconductor microcavity. Phys. Rev. B 49, 16761–16764 (1994). (10.1103/PhysRevB.49.16761) / Phys. Rev. B by R Houdré (1994)
  3. Burstein, E. & Weisbuch, C. (eds) Confined Electrons and Photons (Plenum, New York, (1995)). (10.1007/978-1-4615-1963-8) / Confined Electrons and Photons by E Burstein (1995)
  4. Skolnick, M. S., Fisher, T. A. & Whittaker, D. M. Strong coupling phenomena in quantum microcavity structures. Semiconductor Science & Technology (in the press). (10.1088/0268-1242/13/7/003)
  5. Yamamoto, Y. et al. in Coherence, Amplification, and Quantum Effects in Semiconductor Lasers (ed. Yamamoto, Y.) 561–615 (Wiley, New York, (1991)). / Coherence, Amplification, and Quantum Effects in Semiconductor Lasers by Y Yamamoto (1991)
  6. Ünlü, M. S. & Strite, S. Resonant cavity enhanced photonic devices. J. Appl. Phys. 78, 607–638 (1995). (10.1063/1.360322) / J. Appl. Phys. by MS Ünlü (1995)
  7. Sale, T. E. Vertical Cavity Surface Emitting Lasers (Wiley, New York, (1995)). / Vertical Cavity Surface Emitting Lasers by TE Sale (1995)
  8. Kelkar, P. et al. Excitons in a II–VI semiconductor microcavity in the strong-coupling regime. Phys. Rev. B 52, R5491–R5494 (1995). (10.1103/PhysRevB.52.R5491) / Phys. Rev. B by P Kelkar (1995)
  9. Nakayama, T. & Kakuta, A. Organic luminescent devices with a mutliplex cavity structure. Jpn. J. Appl. Phys. 34, L1234–L1236 (1995). (10.1143/JJAP.34.L1234) / Jpn. J. Appl. Phys. by T Nakayama (1995)
  10. Tsutsui, T. et al. Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure. Appl. Phys. Lett. 65, 1868–1870 (1994). (10.1063/1.113043) / Appl. Phys. Lett. by T Tsutsui (1994)
  11. Dodabalapur, A. et al. Microcavity effects in organic semiconductors. Appl. Phys. Lett. 64, 2486–2488 (1994). (10.1063/1.111606) / Appl. Phys. Lett. by A Dodabalapur (1994)
  12. Jordan, R. H. et al. Efficiency enhancement of microcavity organic light emitting diodes. Appl. Phys. Lett. 69, 1997–1999 (1996). (10.1063/1.116858) / Appl. Phys. Lett. by RH Jordan (1996)
  13. Lidzey, D. G. et al. Control of photoluminescence emission from a conjugated polymer using an optimised microcavity structure. Chem. Phys. Lett. 263, 655–660 (1996). (10.1016/S0009-2614(96)01258-4) / Chem. Phys. Lett. by DG Lidzey (1996)
  14. Lidzey, D. G. et al. Mapping the confined field in a microcavity via the emission from a conjugated polymer. Appl. Phys. Lett. 71, 744–746 (1997). (10.1063/1.119632) / Appl. Phys. Lett. by DG Lidzey (1997)
  15. Lidzey, D. G. et al. Pixelated multicolour microcavity displays. Spec. Topics Quantum Electron. 4, 113–118 (1998). (10.1109/2944.669479) / Spec. Topics Quantum Electron. by DG Lidzey (1998)
  16. Grüner, J. et al. Optical-mode structure in a single-layer polymer microcavity. Synth. Met. 76, 137–140 (1995). (10.1016/0379-6779(95)03437-O) / Synth. Met. by J Grüner (1995)
  17. Tessler, N. et al. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996). (10.1038/382695a0) / Nature by N Tessler (1996)
  18. Diaz-Garcia, M. A. et al. Plastic lasers: comparison of gain narrowing with a soluble semiconducting polymer in waveguides and microcavities. Appl. Phys. Lett. 70, 3191–3193 (1997). (10.1063/1.119156) / Appl. Phys. Lett. by MA Diaz-Garcia (1997)
  19. Agranovich, V. et al. Organic and inorganic quantum wells in a microcavity: Frenkel-Wannier-Mott excitons hybridization and energy transformation. Solid State Commun. 102, 631–636 (1997). (10.1016/S0038-1098(96)00433-4) / Solid State Commun. by V Agranovich (1997)
  20. Kira, M. et al. Quantum theory of nonlinear semiconductor microcavity luminescence explaining “boser” experiments. Phys. Rev. Lett. 79, 5170–5175 (1997). (10.1103/PhysRevLett.79.5170) / Phys. Rev. Lett. by M Kira (1997)
  21. Jahnke, F. et al. Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime. Phys. Rev. Lett. 77, 5257–5260 (1996). (10.1103/PhysRevLett.77.5257) / Phys. Rev. Lett. by F Jahnke (1996)
  22. Kelkar, P. V. et al. Stimulated emission, gain, and coherent oscillations in II–VI semiconductor microcavities. Phys. Rev. B 56, 7564–7573 (1997). (10.1103/PhysRevB.56.7564) / Phys. Rev. B by PV Kelkar (1997)
  23. Nelson, T. R. et al. Room-temperature normal-mode coupling in a semiconductor microcavity utilizing native-oxide Al Al/GaAs mirrors. Appl. Phys. Lett. 69, 3031–3033 (1996). (10.1063/1.116829) / Appl. Phys. Lett. by TR Nelson (1996)
  24. Norris, T. B. in Confined Electrons and Photons (eds Burstein, E. & Weisbuch, C.) 503–521 (Plenum, New York, (1995)). (10.1007/978-1-4615-1963-8_17) / Confined Electrons and Photons by TB Norris (1995)
  25. Grice, A. W. et al. Ablue emitting triazole based conjugated polymer. Adv. Mater. 9, 1174–1178 (1997). (10.1002/adma.19970091511) / Adv. Mater. by AW Grice (1997)
  26. Dolphin, D. (ed.) The Porphyrins (Academic, New York, (1978)). / The Porphyrins by D Dolphin (1978)
  27. Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes (Academic, New York, (1992)). / Photochemistry of Polypyridine and Porphyrin Complexes by K Kalyanasundaram (1992)
  28. Marks, R. N. The photovoltaic response in poly(p-phenylene vinylene) thin film devices. J. Phys. Cond. Matt. 6, 1379–1394 (1994). (10.1088/0953-8984/6/7/009) / J. Phys. Cond. Matt. by RN Marks (1994)
  29. Alvarado, S. et al. Determination of the exciton binding energy in conjugated polymers via STM injection measurements. Phys. Rev. Lett. (in the press).
  30. Strickler, S. J. & Berg, R. A. Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–822 (1962). (10.1063/1.1733166) / J. Chem. Phys. by SJ Strickler (1962)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 4:39 a.m.)
Deposited 2 years, 3 months ago (May 16, 2023, 8:14 p.m.)
Indexed 1 day, 15 hours ago (Sept. 4, 2025, 9:24 a.m.)
Issued 27 years ago (Sept. 1, 1998)
Published 27 years ago (Sept. 1, 1998)
Published Print 27 years ago (Sept. 1, 1998)
Funders 0

None

@article{Lidzey_1998, title={Strong exciton–photon coupling in an organic semiconductor microcavity}, volume={395}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/25692}, DOI={10.1038/25692}, number={6697}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Lidzey, D. G. and Bradley, D. D. C. and Skolnick, M. S. and Virgili, T. and Walker, S. and Whittaker, D. M.}, year={1998}, month=sep, pages={53–55} }