Crossref journal-article
Springer Science and Business Media LLC
Nature Cell Biology (297)
Bibliography

Edwards, R. J., Bentley, N. J., & Carr, A. M. (1999). A Rad3–Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nature Cell Biology, 1(7), 393–398.

Authors 3
  1. Rhian J. Edwards (first)
  2. Nicola J. Bentley (additional)
  3. Antony M. Carr (additional)
References 34 Referenced 151
  1. Carr, A. M. Control of cell cycle arrest by the Mec1sc/Rad3sp DNA structure checkpoint pathway. Curr. Opin. Genet.Dev. 7, 93–98 (1997). (10.1016/S0959-437X(97)80115-3) / Curr. Opin. Genet.Dev. by AM Carr (1997)
  2. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 ( 1996). (10.1126/science.274.5293.1664) / Science by SJ Elledge (1996)
  3. Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893– 1897 (1998). (10.1126/science.282.5395.1893) / Science by S Matsuoka (1998)
  4. Hoekstra, M. F. Responses to DNA damage and regulation of cell cycle checkpoints by the ATM protein kinase family. Curr. Opin. Genet. Dev 7, 170–175 (1997). (10.1016/S0959-437X(97)80125-6) / Curr. Opin. Genet. Dev by MF Hoekstra (1997)
  5. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI 3-kinase. Science 268, 1749– 1753 (1995). (10.1126/science.7792600) / Science by K Savitsky (1995)
  6. Wright, J. A. et al. Protein kinase mutants of human ATR increase sensitivity to UV and ionizing radiation and abrogate cell cycle checkpoint control. Proc. Natl Acad. Sci. USA 95, 7445– 7450 (1998). (10.1073/pnas.95.13.7445) / Proc. Natl Acad. Sci. USA by JA Wright (1998)
  7. Cliby, W. A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159–169 ( 1998). (10.1093/emboj/17.1.159) / EMBO J. by WA Cliby (1998)
  8. Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 153– 157 (1999). (10.1101/gad.13.2.152) / Genes Dev. by RS Tibbetts (1999)
  9. Desany, B. A., Alcasabas, A. A., Bachant, J. B. & Elledge, S. J. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956– 2970 (1998). (10.1101/gad.12.18.2956) / Genes Dev. by BA Desany (1998)
  10. Zhao, X., Muller, E. G. & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 (1998). (10.1016/S1097-2765(00)80277-4) / Mol. Cell by X Zhao (1998)
  11. Weinert, T. A., Kiser, G. L. & Hartwell, L. H. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8, 652–665 ( 1994). (10.1101/gad.8.6.652) / Genes Dev. by TA Weinert (1994)
  12. Greenwell, P. W. et al. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82, 823–829 (1995). (10.1016/0092-8674(95)90479-4) / Cell by PW Greenwell (1995)
  13. Morrow, D. M., Tagle, D. A., Shiloh, Y., Collins, F. S. & Hieter, P. TEL1, an S. cerevisiae homologue of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82, 831– 840 (1995). (10.1016/0092-8674(95)90480-8) / Cell by DM Morrow (1995)
  14. Bentley, N. J. et al. The Schizosaccharomyces pombe rad3 checkpoint gene . EMBO J. 15, 6641–6651 (1996). (10.1002/j.1460-2075.1996.tb01054.x) / EMBO J. by NJ Bentley (1996)
  15. Naito, T., Matsuura, A. & Ishikawa, F. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nature Genet. 2, 203–206 (1998). (10.1038/2517) / Nature Genet. by T Naito (1998)
  16. Griffiths, D. J. F. & Carr, A. M. in DNA Repair in Prokaryates and Lower Eukaryotes Vol. 1 (eds Nickoloff, J. A. & Hoekstra, M. F.) 449–475 (Humana, Totowa, 1998). / DNA Repair in Prokaryates and Lower Eukaryotes by DJF Griffiths (1998)
  17. Critchlow, S. E. & Jackson, S. P. DNA end-joining: from yeast to man. Trends Biochem. Sci. 23, 394–398 (1998). (10.1016/S0968-0004(98)01284-5) / Trends Biochem. Sci. by SE Critchlow (1998)
  18. Lydall, D. & Weinert, T. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270, 1488–1491 (1995). (10.1126/science.270.5241.1488) / Science by D Lydall (1995)
  19. de la Torre-Ruiz, M. A., Green, C. M. & Lowndes, N. F. RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation. EMBO J. 17, 2687–2698 (1998). (10.1093/emboj/17.9.2687) / EMBO J. by MA de la Torre-Ruiz (1998)
  20. Murray, J. M., Lindsay, H. D., Munday, C. A. & Carr, A. M. Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol. Cell. Biol. 17, 6868–6875 (1997). (10.1128/MCB.17.12.6868) / Mol. Cell. Biol. by JM Murray (1997)
  21. Lindsay, H. D. et al. S-phase specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12, 382–395 ( 1998). (10.1101/gad.12.3.382) / Genes Dev. by HD Lindsay (1998)
  22. Martinho, R. G. et al. Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J. 17, 7239– 7249 (1998). (10.1093/emboj/17.24.7239) / EMBO J. by RG Martinho (1998)
  23. Al-Khodairy, F. et al. Identification and characterisation of new elements involved in checkpoints and feedback controls in fission yeast. Mol. Biol. Cell 5, 147–160 ( 1994). (10.1091/mbc.5.2.147) / Mol. Biol. Cell by F Al-Khodairy (1994)
  24. Kostrub, C., Knudsen, K., Subramani, S. & Enoch, T. Hus1p, a conserved fission yeast checkpoint protein, interacts with Rad1p and is phosphorylated in response to DNA damage. EMBO J. 17, 2055–2066 (1998). (10.1093/emboj/17.7.2055) / EMBO J. by C Kostrub (1998)
  25. Walworth, N. & Bernards, R. rad-dependent responses of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353–356 ( 1996). (10.1126/science.271.5247.353) / Science by N Walworth (1996)
  26. Saka, Y., Esashi, F., Matsusaka, T., Mochida, S. & Yanagida, M. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev. 11, 3387–3400 (1997). (10.1101/gad.11.24.3387) / Genes Dev. by Y Saka (1997)
  27. Lydall, D. & Weinert, T. G2/M checkpoint genes of Saccharomyces cerevisiae: further evidence for roles in DNA replication and/or repair . Mol. Gen. Genet. 256, 638– 651 (1997). (10.1007/s004380050612) / Mol. Gen. Genet. by D Lydall (1997)
  28. Garvik, B., Carson, M. & Hartwell, L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint . Mol. Cell. Biol. 15, 6128– 6138 (1995). (10.1128/MCB.15.11.6128) / Mol. Cell. Biol. by B Garvik (1995)
  29. Francesconi, S., Grenon, M., Bouvier, D. & Baldacci, G. p56chk1 protein kinase is required for the DNA replication checkpoint at 37 °C in fission yeast. EMBO J. 16, 1332–1341 (1997). (10.1093/emboj/16.6.1332) / EMBO J. by S Francesconi (1997)
  30. Gutz, H., Heslot, H., Leupold, U. & Loprieno, N. in Handbook of Genetics Vol. 1 (ed. King, R. C.) 395–446 (Plenum, New York, 1974). / Handbook of Genetics by H Gutz (1974)
  31. Craven, R. A. et al. Vectors for the expression of tagged proteins in Schizosaccharomyces pombe. Gene 221, 59– 68 (1998). (10.1016/S0378-1119(98)00434-X) / Gene by RA Craven (1998)
  32. Murray, J. M. et al. Cloning and characterisation of the S. pombe rad15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 genes. Nucleic Acids Res. 20, 2673–2678 (1992). (10.1093/nar/20.11.2673) / Nucleic Acids Res. by JM Murray (1992)
  33. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998). (10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y) / Yeast by J Bahler (1998)
  34. Santocanale, C. & Diffley, J. F. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication . Nature 395, 615–618 (1998). (10.1038/27001) / Nature by C Santocanale (1998)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 4:47 a.m.)
Deposited 3 years, 8 months ago (Dec. 1, 2021, 2:25 p.m.)
Indexed 11 months, 2 weeks ago (Sept. 13, 2024, 11:57 a.m.)
Issued 25 years, 11 months ago (Sept. 23, 1999)
Published 25 years, 11 months ago (Sept. 23, 1999)
Published Online 25 years, 11 months ago (Sept. 23, 1999)
Published Print 25 years, 9 months ago (Nov. 1, 1999)
Funders 0

None

@article{Edwards_1999, title={A Rad3–Rad26 complex responds to DNA damage independently of other checkpoint proteins}, volume={1}, ISSN={1476-4679}, url={http://dx.doi.org/10.1038/15623}, DOI={10.1038/15623}, number={7}, journal={Nature Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Edwards, Rhian J. and Bentley, Nicola J. and Carr, Antony M.}, year={1999}, month=sep, pages={393–398} }