Crossref journal-article
Springer Science and Business Media LLC
Nature Cell Biology (297)
Bibliography

Nielsen, E., Severin, F., Backer, J. M., Hyman, A. A., & Zerial, M. (1999). Rab5 regulates motility of early endosomes on microtubules. Nature Cell Biology, 1(6), 376–382.

Authors 5
  1. Erik Nielsen (first)
  2. Fedor Severin (additional)
  3. Jonathan M. Backer (additional)
  4. Anthony A. Hyman (additional)
  5. Marino Zerial (additional)
References 45 Referenced 410
  1. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996). (10.1146/annurev.cellbio.12.1.575) / Annu. Rev. Cell Dev. Biol. by I Mellman (1996)
  2. Lippincott-Schwartz, J. Cytoskeletal proteins and Golgi dynamics. Curr. Opin. Cell Biol. 10, 52–59 ( 1998). (10.1016/S0955-0674(98)80086-0) / Curr. Opin. Cell Biol. by J Lippincott-Schwartz (1998)
  3. Matteoni, R. & Kreis, T. E. Translocation and clustering of endosomes and lysosomes depends on microtubules. J. Cell Biol. 105, 1253–1265 ( 1987). (10.1083/jcb.105.3.1253) / J. Cell Biol. by R Matteoni (1987)
  4. Gruenberg, J., Griffiths, G. & Howell, K. E. Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J. Cell Biol. 108, 1301– 1316 (1989). (10.1083/jcb.108.4.1301) / J. Cell Biol. by J Gruenberg (1989)
  5. McGraw, T. E., Dunn, K. W. & Maxfield, F. R. Isolation of a temperature-sensitive variant Chinese hamster ovary cell line with a morphologically altered endocytic recycling compartment. J. Cell Physiol. 155, 579– 594 (1993). (10.1002/jcp.1041550316) / J. Cell Physiol. by TE McGraw (1993)
  6. Aniento, F., Emans, N., Griffiths, G. & Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123, 1373–1387 (1993). (10.1083/jcb.123.6.1373) / J. Cell Biol. by F Aniento (1993)
  7. Bomsel, M., Parton, R., Kuznetsov, S. A., Schroer, T. & Gruenberg, J. Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62, 719– 731 (1990). (10.1016/0092-8674(90)90117-W) / Cell by M Bomsel (1990)
  8. Riezman, H. Yeast endocytosis. Trends Cell Biol. 3, 273–277 (1993). (10.1016/0962-8924(93)90056-7) / Trends Cell Biol. by H Riezman (1993)
  9. Lamaze, C., Fujimoto, L. M., Yin, H. L. & Schmid, S. L. The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J. Biol. Chem. 272, 20332– 20335 (1997). (10.1074/jbc.272.33.20332) / J. Biol. Chem. by C Lamaze (1997)
  10. Murphy, C. et al. Endosome dynamics regulated by a Rho protein. Nature 384, 427–432 ( 1996). (10.1038/384427a0) / Nature by C Murphy (1996)
  11. Novick, P. & Brennwald, P. Friends and family: the role of the Rab GTPases in vesicular transport. Cell 75, 597–601 (1993). (10.1016/0092-8674(93)90478-9) / Cell by P Novick (1993)
  12. Simonsen, A. et al. EEA1 links phosphatidylinositol 3-kinase function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998). (10.1038/28879) / Nature by A Simonsen (1998)
  13. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 ( 1999). (10.1038/17618) / Nature by S Christoforidis (1999)
  14. TerBush, D. R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae . EMBO J. 15, 6483–6494 (1996). (10.1002/j.1460-2075.1996.tb01039.x) / EMBO J. by DR TerBush (1996)
  15. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496–504 (1997). (10.1016/S0955-0674(97)80025-7) / Curr. Opin. Cell Biol. by P Novick (1997)
  16. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715– 728 (1992). (10.1016/0092-8674(92)90306-W) / Cell by C Bucci (1992)
  17. Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287– 1296 (1994). (10.1002/j.1460-2075.1994.tb06381.x) / EMBO J. by H Stenmark (1994)
  18. D"Arrigo, A., Bucci, C., Toh, B. H. & Stenmark, H. Microtubules are involved in bafilomycin A1-induced tubulation and Rab5-dependent vacuolation of early endosomes. Eur. J. Cell Biol. 72, 95–103 (1997). / Eur. J. Cell Biol. by A D"Arrigo (1997)
  19. Scheel, J. & Kreis, T. E. Motor protein independent binding of endocytic carrier vesicles to microtubules in vitro. J. Biol. Chem. 266, 18141–18148 (1991). (10.1016/S0021-9258(18)55247-9) / J. Biol. Chem. by J Scheel (1991)
  20. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985). (10.1016/S0092-8674(85)80099-4) / Cell by RD Vale (1985)
  21. Ullrich, O., Horiuchi, H., Bucci, C. & Zerial, M. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature 368, 157– 160 (1994). (10.1038/368157a0) / Nature by O Ullrich (1994)
  22. Howard, J. & Hyman, A. A. Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence microscopy. Methods Cell Biol 39, 105– 113 (1993). (10.1016/S0091-679X(08)60164-8) / Methods Cell Biol by J Howard (1993)
  23. Rybin, V. et al. GTPase activity of rab5 acts as a timer for endocytic membrane fusion. Nature 383, 266– 269 (1996). (10.1038/383266a0) / Nature by V Rybin (1996)
  24. Barnard, R. J. O., Morgan, A. & Burgoyne, R. D. Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis. J. Cell Biol. 139, 875–883 ( 1997). (10.1083/jcb.139.4.875) / J. Cell Biol. by RJO Barnard (1997)
  25. Blocker, A. et al. Molecular requirements for bi-directional movement of phagosomes along microtubules. J. Cell Biol. 137, 113 –129 (1997). (10.1083/jcb.137.1.113) / J. Cell Biol. by A Blocker (1997)
  26. Marlowe, K. J. et al. Changes in kinesin distribution and phosphorylation occur during regulated secretion in pancreatic acinar cells. Eur. J. Cell Biol. 75, 140–152 ( 1998). (10.1016/S0171-9335(98)80056-3) / Eur. J. Cell Biol. by KJ Marlowe (1998)
  27. Bi, G. Q. et al. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol. 138, 999–1008 (1997). (10.1083/jcb.138.5.999) / J. Cell Biol. by GQ Bi (1997)
  28. Patki, V. V. J., Lane, W. S., Toh, B. H., Shpetner, H. S. & Corvera, S. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 94, 7326–7330 (1997). (10.1073/pnas.94.14.7326) / Proc. Natl Acad. Sci. USA by VVJ Patki (1997)
  29. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252 (1999). (10.1038/12075) / Nature Cell Biol. by S Christoforidis (1999)
  30. Siddhanta, U., McIlroy, J., Shah, A., Zhang, Y. & Backer, J. M. Distinct roles for the p110alpha and hVPS34 phosphatidylinositol 3"-kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J. Cell Biol. 143, 1647 –1659 (1998). (10.1083/jcb.143.6.1647) / J. Cell Biol. by U Siddhanta (1998)
  31. Goodson, H. V., Valetti, C. & Kreis, T. E. Motors and membrane traffic. Curr. Opin. Cell Biol. 9, 18–28 ( 1997). (10.1016/S0955-0674(97)80147-0) / Curr. Opin. Cell Biol. by HV Goodson (1997)
  32. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580– 585 (1998). (10.1126/science.279.5350.580) / Science by A Echard (1998)
  33. Burkhardt, J. K., Echeverri, C. J., Nilsson, T. & Vallee, R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997). (10.1083/jcb.139.2.469) / J. Cell Biol. by JK Burkhardt (1997)
  34. Ferhat, L., Kuriyama, R., Lyons, G. E., Micales, B. & Baas, P. W. Expression of the mitotic motor protein CHO1/MKLP1 in postmitotic neurons. Eur. J. Neurosci. 10, 1383–1393 (1998). (10.1046/j.1460-9568.1998.00159.x) / Eur. J. Neurosci. by L Ferhat (1998)
  35. Saito, N. et al. KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 18, 425–438 ( 1997). (10.1016/S0896-6273(00)81243-X) / Neuron by N Saito (1997)
  36. Hoang, E., Bost-usinger, L. & Burnside, B. Characterization of a novel C-kinesin (KIFC3) abundantly expressed in vertebrate retina and RPE. Exp. Eye Res. 69, 57–68 (1999). (10.1006/exer.1999.0671) / Exp. Eye Res. by E Hoang (1999)
  37. Shpetner, H., Joly, M., Hartley, D. & Corvera, S. Potential sites of PI-3 kinase function in the endocytic pathway revealed by the PI-3 kinase inhibitor, wortmannin. J. Cell Biol. 132, 595–605 (1996). (10.1083/jcb.132.4.595) / J. Cell Biol. by H Shpetner (1996)
  38. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 ( 1998). (10.1016/S1097-2765(00)80125-2) / Mol. Cell by CG Burd (1998)
  39. Gaullier, J.-M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998). (10.1038/28767) / Nature by J-M Gaullier (1998)
  40. Stenmark, H., Aasland, R., Toh, B. H. & D’Arringo, A. Endosomal localization of the autoantigen EEA1 is mediated by zinc-binding FYVE finger . J. Biol. Chem. 271, 24048– 24054 (1996). (10.1074/jbc.271.39.24048) / J. Biol. Chem. by H Stenmark (1996)
  41. McBride, H. M . et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell (in the press). (10.1016/S0092-8674(00)81966-2)
  42. Gorvel, J.-P., Chavrier, P., Zerial, M. & Gruenberg, J. Rab5 controls early endosome fusion in vitro. Cell 64, 915–925 (1991). (10.1016/0092-8674(91)90316-Q) / Cell by J-P Gorvel (1991)
  43. Keown, W. A., Campbell, C. R. & Kucherlapati, R. S. Methods for introducing DNA into mammalian cells . Methods Enzymol. 185, 527– 537 (1990). (10.1016/0076-6879(90)85043-N) / Methods Enzymol. by WA Keown (1990)
  44. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 ( 1997). (10.1016/S0092-8674(00)80380-3) / Cell by H Horiuchi (1997)
  45. Bornens, M. & Moudjou, M. Studying the composition and function of centrosomes in vertebrates. Methods Cell Biol. 61 , 13–34 (1999). (10.1016/S0091-679X(08)61973-1) / Methods Cell Biol. by M Bornens (1999)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 4:47 a.m.)
Deposited 3 years, 8 months ago (Dec. 1, 2021, 7:48 p.m.)
Indexed 1 week ago (Aug. 21, 2025, 1:49 p.m.)
Issued 25 years, 11 months ago (Sept. 16, 1999)
Published 25 years, 11 months ago (Sept. 16, 1999)
Published Online 25 years, 11 months ago (Sept. 16, 1999)
Published Print 25 years, 10 months ago (Oct. 1, 1999)
Funders 0

None

@article{Nielsen_1999, title={Rab5 regulates motility of early endosomes on microtubules}, volume={1}, ISSN={1476-4679}, url={http://dx.doi.org/10.1038/14075}, DOI={10.1038/14075}, number={6}, journal={Nature Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Nielsen, Erik and Severin, Fedor and Backer, Jonathan M. and Hyman, Anthony A. and Zerial, Marino}, year={1999}, month=sep, pages={376–382} }