Crossref journal-article
Springer Science and Business Media LLC
Nature Cell Biology (297)
Bibliography

Friedman, D. S., & Vale, R. D. (1999). Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nature Cell Biology, 1(5), 293–297.

Authors 2
  1. Dara S. Friedman (first)
  2. Ronald D. Vale (additional)
References 48 Referenced 255
  1. Vale, R. D. in Guidebook to Cytoskeletal and Motor Proteins 2nd edn (eds Kreis, T. E. & Vale, R. D.) 398–402 (Oxford Univ. Press, Oxford, 1999). (10.1093/oso/9780198599579.003.00121) / Guidebook to Cytoskeletal and Motor Proteins by RD Vale (1999)
  2. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998). (10.1126/science.279.5350.519) / Science by N Hirokawa (1998)
  3. Liao, G. & Gundersen, G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. J. Biol. Chem. 273, 9797–9803 (1998). (10.1074/jbc.273.16.9797) / J. Biol. Chem. by G Liao (1998)
  4. Prahlad, V., Yoon, M., Moir, R. D., Vale, R.D. & Goldman, R. D. Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J. Cell Biol. 143, 159–170 (1998). (10.1083/jcb.143.1.159) / J. Cell Biol. by V Prahlad (1998)
  5. Bloom, G. S., Wagner, M. C., Pfister, K. K. & Brady, S. T. Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide. Biochemistry 27, 3409–3416 (1988). (10.1021/bi00409a043) / Biochemistry by GS Bloom (1988)
  6. Kuznetsov, S. A. et al. The quaternary structure of bovine brain kinesin. EMBO J. 7, 353–356 (1988). (10.1002/j.1460-2075.1988.tb02820.x) / EMBO J. by SA Kuznetsov (1988)
  7. Yang, J. T., Laymon, R. A. & Goldstein, L. S. A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56, 879–889 (1989). (10.1016/0092-8674(89)90692-2) / Cell by JT Yang (1989)
  8. Henningsen, U. & Schliwa, M. Reversal in the direction of movement of a molecular motor. Nature 389, 93–96 (1997). (10.1038/38022) / Nature by U Henningsen (1997)
  9. Endow, S. A. & Waligora, K. W. Determinants of kinesin motor polarity. Science 281, 1200–1202 (1998). (10.1126/science.281.5380.1200) / Science by SA Endow (1998)
  10. Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. L. & Vale, R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 (1997). (10.1016/S0092-8674(00)80360-8) / Cell by RB Case (1997)
  11. Hirokawa, N. et al. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56, 867–878 (1989). (10.1016/0092-8674(89)90691-0) / Cell by N Hirokawa (1989)
  12. Hisanaga, S. et al. The molecular structure of adrenal medulla kinesin. Cell Motil. Cytoskeleton 12, 264–272 (1989). (10.1002/cm.970120407) / Cell Motil. Cytoskeleton by S Hisanaga (1989)
  13. Diefenbach, R. J., Mackay, J. P., Armati, P. J. & Cunningham, A. L. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663–16670 (1998). (10.1021/bi981163r) / Biochemistry by RJ Diefenbach (1998)
  14. Verhey, K. J. et al. Light-chain dependent regulation of kinesin’s interaction with microtubules. J. Cell Biol. 143, 1053–1066 (1998). (10.1083/jcb.143.4.1053) / J. Cell Biol. by KJ Verhey (1998)
  15. Skoufias, D., Cole, D. G., Wedaman, K. P. & Scholey, J. M. The carboxyl-terminal domain of kinesin heavy chain is important for membrane binding. J. Biol. Chem. 269, 1477–1485 (1994). (10.1016/S0021-9258(17)42281-2) / J. Biol. Chem. by D Skoufias (1994)
  16. Hollenbeck, P. J. The distribution, abundance and subcellular localization of kinesin. J. Biol. Chem. 108, 2335–2342 (1989). / J. Biol. Chem. by PJ Hollenbeck (1989)
  17. Niclas, J., Navone, F., Hom-Booher, N. & Vale, R. D. Cloning and localization of a conventional kinesin motor expressed exclusively in neurons. Neuron 12, 1059–1072 (1994). (10.1016/0896-6273(94)90314-X) / Neuron by J Niclas (1994)
  18. Hackney, D. D., Levitt, J. D. & Suhan, J. Kinesin undergoes a 9 S to 6 S conformational transition. J. Biol. Chem. 267, 8696–8701 (1992). (10.1016/S0021-9258(18)42499-4) / J. Biol. Chem. by DD Hackney (1992)
  19. Jiang, M. Y. & Sheetz, M. P. Cargo-activated ATPase activity of kinesin. Biophys. J. 68 (suppl.), 283–285 (1995). / Biophys. J. by MY Jiang (1995)
  20. Moraga, D. E. & Murphy, D. B. Kinesin is ‘‘inactive’’ unless bound to a solid support. Mol. Biol. Cell Abstr. 8, 258 (1997). / Mol. Biol. Cell Abstr. by DE Moraga (1997)
  21. Kuznetsov, S. A., Vaisberg, Y. A., Rothwell, S. W., Murphy, D. B. & Gelfand, V. I. Isolation of a 45-kDA fragment from the kinesin heavy chain with enhanced ATPase and microtubule-binding activities. J. Biol. Chem. 264, 589–595 (1989). (10.1016/S0021-9258(17)31301-7) / J. Biol. Chem. by SA Kuznetsov (1989)
  22. Stock, M. et al. Formation of the compact conformer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity. J. Biol. Chem. 274, 14617–14623 (1999). (10.1074/jbc.274.21.14617) / J. Biol. Chem. by M Stock (1999)
  23. Hackney, D. D., Levitt, J. D. & Wagner, D. D. Characterization of α2β2 and α2 forms of kinesin. Biochem. Biophys. Res. Commun. 174, 810–815 (1991). (10.1016/0006-291X(91)91490-4) / Biochem. Biophys. Res. Commun. by DD Hackney (1991)
  24. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985). (10.1016/S0092-8674(85)80099-4) / Cell by RD Vale (1985)
  25. Cohn, S. A., Ingold, A. L. & Scholey, J. M. Quantitative analysis of sea urchin egg kinesin-driven microtubule motility. J. Biol. Chem. 264, 4290–4297 (1989). (10.1016/S0021-9258(18)83738-3) / J. Biol. Chem. by SA Cohn (1989)
  26. Yang, J. T., Saxton, W. M., Stewart, R. J., Raff, E. C. & Goldstein, L. S. Evidence that the head of kinesin is sufficient for force generation and motility in vitro. Science 249, 42–47 (1990). (10.1126/science.2142332) / Science by JT Yang (1990)
  27. Berliner, E., Young, E. C., Anderson, K., Mahtani, H. & Gelles, J. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature 373, 718–721 (1995). (10.1038/373718a0) / Nature by E Berliner (1995)
  28. Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996). (10.1038/380451a0) / Nature by RD Vale (1996)
  29. Woehlke, G. et al. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997). (10.1016/S0092-8674(00)80329-3) / Cell by G Woehlke (1997)
  30. Wagner, M. C., Pfister, K. K., Bloom, G. S. & Brady, S. T. Copurification of kinesin polypeptides with microtubule-stimulated Mg-ATPase activity and kinetic analysis of enzymatic properties. Cell Motil. Cytoskeleton 12, 195–215 (1989). (10.1002/cm.970120403) / Cell Motil. Cytoskeleton by MC Wagner (1989)
  31. Navone, F. et al. Cloning and expression of a human kinesin heavy chain gene: interaction of the COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells. J. Cell Biol. 117, 1263–1275 (1992). (10.1083/jcb.117.6.1263) / J. Cell Biol. by F Navone (1992)
  32. Andrews, S. B., Gallant, P. E., Leapman, R. D., Schnapp, B. J. & Reese, T. S. Single kinesin molecules crossbridge microtubules in vitro. Proc. Natl Acad. Sci. USA 90, 6503–6507 (1993). (10.1073/pnas.90.14.6503) / Proc. Natl Acad. Sci. USA by SB Andrews (1993)
  33. Kozielski, F. et al. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985–994 (1997). (10.1016/S0092-8674(00)80489-4) / Cell by F Kozielski (1997)
  34. Tripet, B., Vale, R. D. & Hodges, R. S. Demonstration of coiled-coil interactions within the kinesin neck region using synthetic peptides: implications for motor activity. J. Biol. Chem. 272, 8946–8956 (1997). (10.1074/jbc.272.14.8946) / J. Biol. Chem. by B Tripet (1997)
  35. Romberg, L., Pierce, D. W. & Vale, R. D. Role of the kinesin neck region in processive microtubule-based motility. J. Cell Biol. 140, 1407–1416 (1998). (10.1083/jcb.140.6.1407) / J. Cell Biol. by L Romberg (1998)
  36. Grummt, M. et al. Importance of a flexible hinge near the motor domain in kinesin-driven motility. EMBO J. 17, 5536–5542 (1998). (10.1093/emboj/17.19.5536) / EMBO J. by M Grummt (1998)
  37. Vale, R. D. & Fletterick, R. J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–777 (1997). (10.1146/annurev.cellbio.13.1.745) / Annu. Rev. Cell Dev. Biol. by RD Vale (1997)
  38. Pfister, K. K., Wagner, M. C., Stenoien, D. L., Brady, S. T. & Bloom, G. S. Monoclonal antibodies to kinesin heavy and lights chains stain vesicle-like structures, but not microtubules, in cultured cells. J. Cell Biol. 108, 1453–1463 (1989). (10.1083/jcb.108.4.1453) / J. Cell Biol. by KK Pfister (1989)
  39. Bi, G. Q. et al. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol. 138, 999–1008 (1997). (10.1083/jcb.138.5.999) / J. Cell Biol. by GQ Bi (1997)
  40. Lee, K. D. & Hollenbeck, P. J. Phosphorylation of kinesin in vivo correlates with organelle association and neurite outgrowth. J. Biol. Chem. 270, 5600–5605 (1995). (10.1074/jbc.270.10.5600) / J. Biol. Chem. by KD Lee (1995)
  41. Matthies, H. J., Miller, R. J. & Palfrey, H. C. Calmodulin binding to and cAMP-dependent phosphorylation of kinesin light chains modulate kinesin ATPase activity. J. Biol. Chem. 268, 11176–11187 (1993). (10.1016/S0021-9258(18)82108-1) / J. Biol. Chem. by HJ Matthies (1993)
  42. McIlvain, J. M., Burkhardt, J. K., Hamm-Alvarez, S., Argon, Y. & Sheetz, M. P. Regulation of kinesin activity by phosphorylation of kinesin-associated proteins. J. Biol. Chem. 269, 19176–19182 (1994). (10.1016/S0021-9258(17)32291-3) / J. Biol. Chem. by JM McIlvain (1994)
  43. Lindesmith, L., McIlvain, J. M., Argon, Y. & Sheetz, M. P. Phosphotransferases associated with the regulation of kinesin motor activity. J. Biol. Chem. 272, 22929–22933 (1997). (10.1074/jbc.272.36.22929) / J. Biol. Chem. by L Lindesmith (1997)
  44. Hollenbeck, P. J. Phosphorylation of neuronal kinesin heavy and light chains in vivo. J. Neurochem. 60, 2265–2275 (1993). (10.1111/j.1471-4159.1993.tb03513.x) / J. Neurochem. by PJ Hollenbeck (1993)
  45. Cabeza-Arvelaiz, Y. et al. Cloning and genetic characterization of the human kinesin light chain (KLC) gene. DNA Cell Biol. 12, 881–892 (1993). (10.1089/dna.1993.12.881) / DNA Cell Biol. by Y Cabeza-Arvelaiz (1993)
  46. Kodama, T., Fukui, K. & Kometani, K. The initial phosphate burst in ATP hydrolysis by myosin and subfragment 1 as studied by a modified Malachite Green method for determination of organic phosphate. J. Biochem. 99, 1465–1472 (1986). (10.1093/oxfordjournals.jbchem.a135616) / J. Biochem. by T Kodama (1986)
  47. Pierce, D. W. & Vale, R. D. Assaying processive movement of kinesin by fluorescence microscopy. Methods Enzymol. 298, 154–171 (1998). (10.1016/S0076-6879(98)98016-8) / Methods Enzymol. by DW Pierce (1998)
  48. Gibbons, I. R. & Fronk, E. A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. J. Biol. Chem. 254, 187–196 (1979). (10.1016/S0021-9258(17)30290-9) / J. Biol. Chem. by IR Gibbons (1979)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 4:47 a.m.)
Deposited 1 year, 7 months ago (Jan. 3, 2024, 6:56 a.m.)
Indexed 1 week, 4 days ago (Aug. 19, 2025, 6:11 a.m.)
Issued 26 years ago (Aug. 11, 1999)
Published 26 years ago (Aug. 11, 1999)
Published Online 26 years ago (Aug. 11, 1999)
Published Print 25 years, 11 months ago (Sept. 1, 1999)
Funders 0

None

@article{Friedman_1999, title={Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain}, volume={1}, ISSN={1476-4679}, url={http://dx.doi.org/10.1038/13008}, DOI={10.1038/13008}, number={5}, journal={Nature Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Friedman, Dara S. and Vale, Ronald D.}, year={1999}, month=aug, pages={293–297} }