Crossref journal-article
Springer Science and Business Media LLC
Nature Cell Biology (297)
Bibliography

Pines, J. (1999). Four-dimensional control of the cell cycle. Nature Cell Biology, 1(3), E73–E79.

Authors 1
  1. Jonathon Pines (first)
References 90 Referenced 310
  1. Jackman, M., Firth, M. & Pines, J. Human cyclins B1 and B2 are localised to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. EMBO J. 14, 1646–1654 (1995). (10.1002/j.1460-2075.1995.tb07153.x) / EMBO J. by M Jackman (1995)
  2. McGowan, C. H. & Russell, P. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J. 12, 75–85 (1993). (10.1002/j.1460-2075.1993.tb05633.x) / EMBO J. by CH McGowan (1993)
  3. Liu, F., Stanton, J. J., Wu, Z. & Piwnica-Worms, H. The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol. Cell. Biol. 17, 571–583 (1997). (10.1128/MCB.17.2.571) / Mol. Cell. Biol. by F Liu (1997)
  4. Girard, F. et al. cdc25 is a nuclear protein expressed constitutively throughout the cell cycle in nontransformed mammalian cells. J. Cell Biol. 118, 785–794 (1992). (10.1083/jcb.118.4.785) / J. Cell Biol. by F Girard (1992)
  5. Millar, J. B. et al. p55CDC25 is a nuclear protein required for the initiation of mitosis in human cells. Proc. Natl Acad. Sci. USA 88, 10500–10504 (1991). (10.1073/pnas.88.23.10500) / Proc. Natl Acad. Sci. USA by JB Millar (1991)
  6. Gabrielli, B. G. et al. Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. J. Cell Sci. 109, 1081–1093 (1996). (10.1242/jcs.109.5.1081) / J. Cell Sci. by BG Gabrielli (1996)
  7. Moll, T., Tebb, G., Surana, U., Robitsch, H. & Nasmyth, K. The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66, 743–758 (1991). (10.1016/0092-8674(91)90118-I) / Cell by T Moll (1991)
  8. Long, R. M. et al. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277, 383–387 (1997). (10.1126/science.277.5324.383) / Science by RM Long (1997)
  9. Fukuda, M., Gotoh, Y. & Nishida, E. Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16, 1901–1908 (1997). (10.1093/emboj/16.8.1901) / EMBO J. by M Fukuda (1997)
  10. Brunet, A. et al. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J. 18, 664–674 (1999). (10.1093/emboj/18.3.664) / EMBO J. by A Brunet (1999)
  11. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95, 779–791 (1998). (10.1016/S0092-8674(00)81701-8) / Cell by T Tsukazaki (1998)
  12. Chen, Z. et al. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev. 9, 1586–1597 (1995). (10.1101/gad.9.13.1586) / Genes Dev. by Z Chen (1995)
  13. Winston, J. T. et al. The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 13, 270–283 (1999). (10.1101/gad.13.3.270) / Genes Dev. by JT Winston (1999)
  14. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804 (1997). (10.1093/emboj/16.13.3797) / EMBO J. by H Aberle (1997)
  15. Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499–3511 (1998). (10.1101/gad.12.22.3499) / Genes Dev. by JA Diehl (1998)
  16. Stepanova, L., Leng, X., Parker, S. B. & Harper, J. W. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev. 10, 1491–1502 (1996). (10.1101/gad.10.12.1491) / Genes Dev. by L Stepanova (1996)
  17. Diehl, J. A., Zindy, F. & Sherr, C. J. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 11, 957–972 (1997). (10.1101/gad.11.8.957) / Genes Dev. by JA Diehl (1997)
  18. Yew, P. R. & Kirschner, M. W. Proteolysis and DNA replication: the CDC34 requirement in the Xenopus egg cell cycle. Science 277, 1672–1676 (1997). (10.1126/science.277.5332.1672) / Science by PR Yew (1997)
  19. Tomoda, K., Kubota, Y. & Kato, J. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398, 160–165 (1999). (10.1038/18230) / Nature by K Tomoda (1999)
  20. Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998). (10.1016/S0092-8674(00)81603-7) / Cell by MH Glickman (1998)
  21. Wei, N. et al. The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr. Biol. 8, 919–922 (1998). (10.1016/S0960-9822(07)00372-7) / Curr. Biol. by N Wei (1998)
  22. Peter, M., Gartner, A., Horecka, J., Ammerer, G. & Herskowitz, I. FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73, 747–760 (1993). (10.1016/0092-8674(93)90254-N) / Cell by M Peter (1993)
  23. Valtz, N., Peter, M. & Herskowitz, I. FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J. Cell Biol. 131, 863–873 (1995). (10.1083/jcb.131.4.863) / J. Cell Biol. by N Valtz (1995)
  24. Henchoz, S. et al. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev. 11, 3046–3060 (1997). (10.1101/gad.11.22.3046) / Genes Dev. by S Henchoz (1997)
  25. Butty, A. C., Pryciak, P. M., Huang, L. S., Herskowitz, I. & Peter, M. The role of far1p in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating. Science 282, 1511–1516 (1998). (10.1126/science.282.5393.1511) / Science by AC Butty (1998)
  26. Reynisdottir, I. & Massague, J. The subcellular locations of p15(Ink4b) and p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev. 11, 492–503 (1997). (10.1101/gad.11.4.492) / Genes Dev. by I Reynisdottir (1997)
  27. Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67–74 (1994). (10.1016/0092-8674(94)90573-8) / Cell by H Toyoshima (1994)
  28. La Thangue, N. DP and E2F proteins: components of a heterodimeric transcription factor implicated in cell cycle control. Curr. Opin. Cell Biol. 6, 443–450 (1994). (10.1016/0955-0674(94)90038-8) / Curr. Opin. Cell Biol. by N La Thangue (1994)
  29. Ormondroyd, E., de la Luna, S. & La Thangue, N. B. A new member of the DP family, DP-3, with distinct protein products suggests a regulatory role for alternative splicing in the cell cycle transcription factor DRTF1/E2F. Oncogene 11, 1437–1446 (1995). / Oncogene by E Ormondroyd (1995)
  30. de la Luna, S., Burden, M. J., Lee, C. W. & La Thangue, N. B. Nuclear accumulation of the E2F heterodimer regulated by subunit composition and alternative splicing of a nuclear localization signal. J. Cell Sci. 109, 2443–2452 (1996). (10.1242/jcs.109.10.2443) / J. Cell Sci. by S de la Luna (1996)
  31. Verona, R. et al. E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol. Cell. Biol. 17, 7268–7282 (1997). (10.1128/MCB.17.12.7268) / Mol. Cell. Biol. by R Verona (1997)
  32. Hennessy, K. M., Clark, C. D. & Botstein, D. Subcellular localization of yeast CDC46 varies with the cell cycle. Genes Dev. 4, 2252–2263 (1990). (10.1101/gad.4.12b.2252) / Genes Dev. by KM Hennessy (1990)
  33. Petersen, B. O., Lukas, J., Sorensen, C. S., Bartek, J. & Helin, K. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J. 18, 396–410 (1999). (10.1093/emboj/18.2.396) / EMBO J. by BO Petersen (1999)
  34. Hua, X. H. & Newport, J. Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and cdc6, but dependent on cdk2. J. Cell Biol. 140, 271–281 (1998). (10.1083/jcb.140.2.271) / J. Cell Biol. by XH Hua (1998)
  35. Nishitani, H. et al. Loss of RCC1, a nuclear DNA-binding protein, uncouples the completion of DNA replication from the activation of cdc2 protein kinase and mitosis. EMBO J. 10, 1555–1564 (1991). (10.1002/j.1460-2075.1991.tb07675.x) / EMBO J. by H Nishitani (1991)
  36. Hagting, A., Karlsson, C., Clute, P., Jackman, M. & Pines, J. MPF localisation is controlled by nuclear export. EMBO J. 17, 4127–4138 (1998). (10.1093/emboj/17.14.4127) / EMBO J. by A Hagting (1998)
  37. Toyoshima, F., Moriguchi, T., Wada, A., Fukuda, M. & Nishida, E. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J. 17, 2728–2735 (1998). (10.1093/emboj/17.10.2728) / EMBO J. by F Toyoshima (1998)
  38. Yang, J. et al. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev. 12, 2131–2143 (1998). (10.1101/gad.12.14.2131) / Genes Dev. by J Yang (1998)
  39. Jin, P., Hardy, S. & Morgan, D. O. Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. J. Cell Biol. 141, 875–885 (1998). (10.1083/jcb.141.4.875) / J. Cell Biol. by P Jin (1998)
  40. Dulic, V., Stein, G. H., Far, D. F. & Reed, S. I. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol. Cell. Biol. 18, 546–557 (1998). (10.1128/MCB.18.1.546) / Mol. Cell. Biol. by V Dulic (1998)
  41. Pines, J. & Hunter, T. Human cyclins A and B are differentially located in the cell and undergo cell cycle dependent nuclear transport. J. Cell Biol. 115, 1–17 (1991). (10.1083/jcb.115.1.1) / J. Cell Biol. by J Pines (1991)
  42. Ookata, K., Hisanaga, S., Okano, T., Tachibana, K. & Kishimoto, T. Relocation and distinct subcellular localization of p34cdc2-cyclin B complex at meiosis reinitiation in starfish oocytes. EMBO J. 11, 1763–1772 (1992). (10.1002/j.1460-2075.1992.tb05228.x) / EMBO J. by K Ookata (1992)
  43. Gallant, P. & Nigg, E. A. Cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells. J. Cell Biol. 117, 213–224 (1992). (10.1083/jcb.117.1.213) / J. Cell Biol. by P Gallant (1992)
  44. Li, J., Meyer, A. N. & Donoghue, D. J. Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation. Proc. Natl Acad. Sci. USA 94, 502–507 (1997). (10.1073/pnas.94.2.502) / Proc. Natl Acad. Sci. USA by J Li (1997)
  45. Li, J., Meyer, A. N. & Donoghue, D. J. Requirement for phosphorylation of cyclin B1 for Xenopus oocyte maturation. Mol. Biol. Cell. 6, 1111–1124 (1995). (10.1091/mbc.6.9.1111) / Mol. Biol. Cell. by J Li (1995)
  46. Pines, J. & Hunter, T. The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B. EMBO J. 13, 3772–3781 (1994). (10.1002/j.1460-2075.1994.tb06688.x) / EMBO J. by J Pines (1994)
  47. Lowe, M. et al. Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell 94, 783–793 (1998). (10.1016/S0092-8674(00)81737-7) / Cell by M Lowe (1998)
  48. Brandeis, M. et al. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc. Natl Acad. Sci. USA 95, 4344–4349 (1998). (10.1073/pnas.95.8.4344) / Proc. Natl Acad. Sci. USA by M Brandeis (1998)
  49. Dunphy, W. G. The decision to enter mitosis. Trends Cell Biol. 4, 202–207 (1994). (10.1016/0962-8924(94)90142-2) / Trends Cell Biol. by WG Dunphy (1994)
  50. Mueller, P. R., Coleman, T. R., Kumagai, A. & Dunphy, W. G. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270, 86–90 (1995). (10.1126/science.270.5233.86) / Science by PR Mueller (1995)
  51. Booher, R. N., Holman, P. S. & Fattaey, A. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J. Biol. Chem. 272, 22300–22306 (1997). (10.1074/jbc.272.35.22300) / J. Biol. Chem. by RN Booher (1997)
  52. Lew, D. J. & Reed, S. I. A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J. Cell Biol. 129, 739–749 (1995). (10.1083/jcb.129.3.739) / J. Cell Biol. by DJ Lew (1995)
  53. McMillan, J. N., Sia, R. A. L. & Lew, D. J. A morphogenesis checkpoint monitors the actin cytoskeleton in yeast. J. Cell Biol. 142, 1487–1499 (1998). (10.1083/jcb.142.6.1487) / J. Cell Biol. by JN McMillan (1998)
  54. Sia, R. A., Bardes, E. S. & Lew, D. J. Control of Swe1p degradation by the morphogenesis checkpoint. EMBO J. 17, 6678–6688 (1998). (10.1093/emboj/17.22.6678) / EMBO J. by RA Sia (1998)
  55. Barral, Y., Parra, M., Bidlingmaier, S. & Snyder, M. Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev. 13, 176–187 (1999). (10.1101/gad.13.2.176) / Genes Dev. by Y Barral (1999)
  56. Okuzaki, D., Tanaka, S., Kanazawa, H. & Nojima, H. Gin4 of S. cerevisiae is a bud neck protein that interacts with the Cdc28 complex. Genes Cells 2, 753–770 (1997). (10.1046/j.1365-2443.1997.1590358.x) / Genes Cells by D Okuzaki (1997)
  57. Carroll, C. W., Altman, R., Schieltz, D., Yates, J. R. & Kellogg, D. The septins are required for the mitosis-specific activation of the Gin4 kinase. J. Cell Biol. 143, 709–717 (1998). (10.1083/jcb.143.3.709) / J. Cell Biol. by CW Carroll (1998)
  58. Altman, R. & Kellogg, D. Control of mitotic events by Nap1 and the Gin4 kinase. J. Cell Biol. 138, 119–130 (1997). (10.1083/jcb.138.1.119) / J. Cell Biol. by R Altman (1997)
  59. Wu, L., Shiozaki, K., Aligue, R. & Russell, P. Spatial organization of the Nim1-Wee1-Cdc2 mitotic control network in Schizosaccharomyces pombe. Mol. Biol. Cell. 7, 1749–1758 (1996). (10.1091/mbc.7.11.1749) / Mol. Biol. Cell. by L Wu (1996)
  60. Lopez-Girona, A., Furnari, B., Mondesert, O. & Russell, P. Nuclear localization of Cdc25 regulated by DNA damage and 14-3-3 protein. Nature 397, 172–175 (1999). (10.1038/16488) / Nature by A Lopez-Girona (1999)
  61. Furnari, B., Rhind, N. & Russell, P. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277, 1495–1497 (1997). (10.1126/science.277.5331.1495) / Science by B Furnari (1997)
  62. Peng, C.Y. et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997). (10.1126/science.277.5331.1501) / Science by CY Peng (1997)
  63. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–1501 (1997). (10.1126/science.277.5331.1497) / Science by Y Sanchez (1997)
  64. Hermeking, H. et al. 14-3-3 is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1, 3–11 (1997). (10.1016/S1097-2765(00)80002-7) / Mol. Cell by H Hermeking (1997)
  65. Hoffmann, I., Clarke, P. R., Marcote, M. J., Karsenti, E. & Draetta, G. Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12, 53–63 (1993). (10.1002/j.1460-2075.1993.tb05631.x) / EMBO J. by I Hoffmann (1993)
  66. Kumagai, A. & Dunphy, W. G. Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273, 1377–1380 (1996). (10.1126/science.273.5280.1377) / Science by A Kumagai (1996)
  67. Peng, C. Y. et al. C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ. 9, 197–208 (1998). / Cell Growth Differ. by CY Peng (1998)
  68. Yoshitome, S., Furuno, N. & Sagata, N. Overexpression of the cytoplasmic retention signal region of cyclin B2, but not of cyclin B1, inhibits bipolar spindle formation in Xenopus oocytes. Biol. Cell 90, 509–518 (1998). (10.1111/j.1768-322X.1998.tb01060.x) / Biol. Cell by S Yoshitome (1998)
  69. Lee, K. S., Grenfell, T. Z., Yarm, F. R. & Erikson, R. L. Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl Acad. Sci. USA 95, 9301–9306 (1998). (10.1073/pnas.95.16.9301) / Proc. Natl Acad. Sci. USA by KS Lee (1998)
  70. King, R. W., Deshaies, R. J., Peters, J. M. & Kirschner, M. W. How proteolysis drives the cell cycle. Science 274, 1652–1659 (1996). (10.1126/science.274.5293.1652) / Science by RW King (1996)
  71. Gorbsky, G. J. Cell cycle checkpoints: arresting progress in mitosis. Bioessays 19, 193–197 (1997). (10.1002/bies.950190303) / Bioessays by GJ Gorbsky (1997)
  72. Rieder, C. L., Schultz, A., Cole, R. & Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127, 1301–1310 (1994). (10.1083/jcb.127.5.1301) / J. Cell Biol. by CL Rieder (1994)
  73. Nasmyth, K. Separating sister chromatids. Trends Biochem. Sci. 24, 98–104 (1999). (10.1016/S0968-0004(99)01358-4) / Trends Biochem. Sci. by K Nasmyth (1999)
  74. Elledge, S. J. Mitotic arrest: Mad2 prevents sleepy from waking up the APC. Science 279, 999–1000 (1998). (10.1126/science.279.5353.999) / Science by SJ Elledge (1998)
  75. Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242–246 (1996). (10.1126/science.274.5285.242) / Science by RH Chen (1996)
  76. Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–735 (1997). (10.1016/S0092-8674(00)80255-X) / Cell by SS Taylor (1997)
  77. Tugendreich, S., Tomkiel, J., Earnshaw, W. & Hieter, P. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81, 261–268 (1995). (10.1016/0092-8674(95)90336-4) / Cell by S Tugendreich (1995)
  78. Jorgensen, P. M., Brundell, E., Starborg, M. & Hoog, C. A subunit of the anaphase-promoting complex is a centromere-associated protein in mammalian cells. Mol. Cell. Biol. 18, 468–476 (1998). (10.1128/MCB.18.1.468) / Mol. Cell. Biol. by PM Jorgensen (1998)
  79. Kallio, M., Weinstein, J., Daum, J. R., Burke, D. J. & Gorbsky, G. J. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell Biol. 141, 1393–1406 (1998). (10.1083/jcb.141.6.1393) / J. Cell Biol. by M Kallio (1998)
  80. Clute, P. & Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nature Cell Biol. 1, 82–87 (1999). (10.1038/10049) / Nature Cell Biol. by P Clute (1999)
  81. Huang, J. & Raff, J. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 (1999). (10.1093/emboj/18.8.2184) / EMBO J. by J Huang (1999)
  82. Visintin, R., Hwang, E. S. & Amon, A. Cfi1 prevents premature exit from mitosis by sequestering the Cdc14 phosphatase in the nucleolus. Nature 398, 818–823 (1999). (10.1038/19775) / Nature by R Visintin (1999)
  83. Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233–244 (1999). (10.1016/S0092-8674(00)80733-3) / Cell by W Shou (1999)
  84. Bahler, J. et al. Role of polo kinase and Mid1p in determining the site of cell division in fission yeast. J. Cell Biol. 143, 1603–1616 (1998). (10.1083/jcb.143.6.1603) / J. Cell Biol. by J Bahler (1998)
  85. Field, C. M. & Alberts, B. M. Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J. Cell Biol. 131, 165–178 (1995). (10.1083/jcb.131.1.165) / J. Cell Biol. by CM Field (1995)
  86. Ikeshima-Kataoka, H., Skeath, J. B., Nabeshima, Y., Doe, C. Q. & Matsuzaki, F. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390, 625–629 (1997). (10.1038/37641) / Nature by H Ikeshima-Kataoka (1997)
  87. Shen, C. P., Jan, L. Y. & Jan, Y. N. Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90, 449–458 (1997). (10.1016/S0092-8674(00)80505-X) / Cell by CP Shen (1997)
  88. Jan, Y. N. & Jan, L. Y. Asymmetric cell division. Nature 392, 775–778 (1998). (10.1038/33854) / Nature by YN Jan (1998)
  89. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995). (10.1016/0092-8674(95)90082-9) / Cell by S Guo (1995)
  90. Pines, J. Checkpoint on the nuclear frontier. Nature 397, 104–105 (1999). (10.1038/16344) / Nature by J Pines (1999)
Dates
Type When
Created 23 years ago (July 26, 2002, 4:47 a.m.)
Deposited 3 years, 8 months ago (Dec. 1, 2021, 3:05 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 7, 2025, 4:47 p.m.)
Issued 26 years, 1 month ago (July 1, 1999)
Published 26 years, 1 month ago (July 1, 1999)
Published Print 26 years, 1 month ago (July 1, 1999)
Funders 0

None

@article{Pines_1999, title={Four-dimensional control of the cell cycle}, volume={1}, ISSN={1476-4679}, url={http://dx.doi.org/10.1038/11041}, DOI={10.1038/11041}, number={3}, journal={Nature Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Pines, Jonathon}, year={1999}, month=jul, pages={E73–E79} }