Crossref journal-article
American Geophysical Union (AGU)
Journal of Geophysical Research: Planets (13)
Abstract

Models of coupled crustal deformation and mantle convection on Venus are reevaluated in light of recent experimental evidence suggesting that the strength of dry basalt is comparable to that of olivine. A previous model which assumed a relatively weak basalt flow law, more appropriate for hydrated crust, is compared to a similar model that assumes a strong basalt flow law, more appropriate for dry crust. A principal difference is the timescale for significant crustal thickening, of the order of 108 years for the weak basalt model and 109 years for the strong basalt model. These results can be understood in the context of theoretical scaling relations for convecting temperature dependent media which imply that in the absence of concentrated zones of near‐surface weakness, of the type associated with plate margins on Earth, the lithospheric overturn time, which sets the timescale required for convective thickening of crust, scales dominantIy with the Rayleigh number defined by the average viscosity of the lithosphere. Theoretical scalings, as well as numerical models, suggest crustal thickening timescales of the order of 108 years remain possible for high bulk mantle Rayleigh numbers and effective viscosity contrasts from lithosphere to interior mantle of the order of 103. Such timescales imply a relatively thin lithosphere and heat loss comparable to that of the present‐day Earth. The large values inferred for the thickness of the mechanical lithosphere on Venus, if correct, would thus tend to favor timescales of the order of 109 years, if one assumes relatively low convective mantle heat loss over an equivalent time. This, in turn, would argue against the likelihood of highland plateaus being manifestations of crustal thickening above mantle downflows. If, instead, one assumes that convective heat removal and implied lithospheric overturn rates were significantly higher over the last several hundred million years, then highland formation due to crustal thickening cannot be ruled out based solely on the strength of dry crust.

Bibliography

Lenardic, A., Kaula, W. M., & Bindschadler, D. L. (1995). Some effects of a dry crustal flow law on numerical simulations of coupled crustal deformation and mantle convection on Venus. Journal of Geophysical Research: Planets, 100(E8), 16949–16957. Portico.

Authors 3
  1. A. Lenardic (first)
  2. W. M. Kaula (additional)
  3. D. L. Bindschadler (additional)
References 40 Referenced 23
  1. 10.1029/93JE00052
  2. 10.1029/JB095iB13p21329
  3. 10.1029/92JE01165
  4. 10.1111/j.1365-246X.1978.tb04218.x
  5. 10.1029/JB087iB08p06781
  6. 10.1016/0031-9201(84)90021-9
  7. 10.1002/sapm1985723189
  8. 10.1098/rsta.1978.0008
  9. 10.1006/icar.1994.1171
  10. 10.1029/94JE02196
  11. 10.1029/91JB00055
  12. 10.1029/GL016i002p00179
  13. 10.1029/93JE03080
  14. 10.1111/j.1365-246X.1994.tb00146.x
  15. 10.1029/JB085iB12p07031
  16. 10.1126/science.247.4947.1191
  17. {'key': 'e_1_2_1_18_1', 'first-page': '697', 'article-title': 'Formation of venusian crustal plateaus over mantle downwelling (abstract)', 'author': 'Kidder J. G.', 'year': '1994', 'journal-title': 'Lunar Planet. Sci.'} / Lunar Planet. Sci. / Formation of venusian crustal plateaus over mantle downwelling (abstract) by Kidder J. G. (1994)
  18. 10.1016/0031-9201(90)90225-M / Phys. Earth Planet. Inter. / ConMan: Vectorizing a finite element code for incompressible two‐dimensional convection in the Earth's mantle by King S. D. (1990)
  19. 10.1029/92JB02858
  20. 10.1029/91GL02734
  21. 10.1029/93JE01799
  22. {'key': 'e_1_2_1_23_1', 'first-page': '817', 'article-title': 'Dry deformation of diabase: Implications for tectonics on Venus (abstract)', 'author': 'Mackwell S. J.', 'year': '1994', 'journal-title': 'Lunar Planet. Sci.'} / Lunar Planet. Sci. / Dry deformation of diabase: Implications for tectonics on Venus (abstract) by Mackwell S. J. (1994)
  23. 10.1017/S0022112073000868
  24. 10.1029/94GL02055
  25. 10.1063/1.868465
  26. 10.1016/0031-9201(84)90057-8
  27. 10.1016/0040-1951(91)90475-8
  28. 10.1017/S0022112091000496
  29. 10.1029/92GL01862
  30. 10.1006/icar.1994.1175
  31. 10.1146/annurev.ea.22.050194.003121
  32. 10.1029/92JE01696
  33. 10.1029/92JE01274
  34. 10.1029/92JE01246
  35. 10.1006/icar.1994.1174
  36. 10.1006/icar.1994.1166
  37. 10.1007/978-94-015-8206-3_10
  38. {'key': 'e_1_2_1_39_1', 'first-page': '1331', 'article-title': 'A tectonic resurfacing model for Venus (abstract)', 'author': 'Solomon S. C.', 'year': '1993', 'journal-title': 'Lunar Planet. Sci.'} / Lunar Planet. Sci. / A tectonic resurfacing model for Venus (abstract) by Solomon S. C. (1993)
  39. 10.1029/92GL02319
  40. 10.1029/93JE01775
Dates
Type When
Created 21 years, 6 months ago (Feb. 3, 2004, 10:05 p.m.)
Deposited 1 year, 11 months ago (Sept. 22, 2023, 5:05 p.m.)
Indexed 1 year, 1 month ago (July 23, 2024, 10:59 p.m.)
Issued 29 years, 11 months ago (Aug. 25, 1995)
Published 29 years, 11 months ago (Aug. 25, 1995)
Published Online 12 years, 11 months ago (Sept. 21, 2012)
Published Print 29 years, 11 months ago (Aug. 25, 1995)
Funders 0

None

@article{Lenardic_1995, title={Some effects of a dry crustal flow law on numerical simulations of coupled crustal deformation and mantle convection on Venus}, volume={100}, ISSN={0148-0227}, url={http://dx.doi.org/10.1029/95je01895}, DOI={10.1029/95je01895}, number={E8}, journal={Journal of Geophysical Research: Planets}, publisher={American Geophysical Union (AGU)}, author={Lenardic, A. and Kaula, W. M. and Bindschadler, D. L.}, year={1995}, month=aug, pages={16949–16957} }