10.1023/a:1021026930129
Crossref journal-article
Springer Science and Business Media LLC
Journal of Statistical Physics (297)
Bibliography

Maes, C., & Netočný, K. (2003). Time-Reversal and Entropy. Journal of Statistical Physics, 110(1–2), 269–310.

Authors 2
  1. Christian Maes (first)
  2. Karel Netočný (additional)
References 24 Referenced 219
  1. C. Maes, Fluctuation theorem as a Gibbs property, J. Statist. Phys. 95:367-392 (1999). (10.1023/A:1004541830999) / J. Statist. Phys. by C. Maes (1999)
  2. C. Maes, F. Redig, and A. Van Moffaert, On the definition of entropy production via examples, J. Math. Phys. 41:1528-1554 (2000). (10.1063/1.533195) / J. Math. Phys. by C. Maes (2000)
  3. C. Maes, F. Redig, and M. Verschuere, From global to local fluctuation theorems, Moscow Mathematical Journal 1:421-438 (2001). (10.17323/1609-4514-2001-1-3-421-438) / Moscow Mathematical Journal by C. Maes (2001)
  4. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of second law violations in steady flows, Phys. Rev. Lett. 71:2401-2404 (1993). (10.1103/PhysRevLett.71.2401) / Phys. Rev. Lett. by D. J. Evans (1993)
  5. G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Letters 74: 2694-2697 (1995).Dynamical ensembles in stationary states, J. Statist. Phys. 80:931-970 (1995). (10.1103/PhysRevLett.74.2694) / Phys. Rev. Letters by G. Gallavotti (1995)
  6. D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, J. Statist. Phys. 95:393-468 (1999). (10.1023/A:1004593915069) / J. Statist. Phys. by D. Ruelle (1999)
  7. L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91:1505-1512 (1953). More generally Onsager–Machlup consider in their second paper (starting on page 1512) a second-order process for extensive variables (α, β)≡ (α1,..., αm; β1,..., βm) parametrizing the partition Γ that we had before. The difference between the α's and the β's arises from their different behavior under applying the time reversal Π; the β's are the so called “velocity” variables that change their sign if the time is reversed; the α's are even functions under time reversal. In all cases, they are thermodynamic variables that are sums of a large number of molecular variables. (10.1103/PhysRev.91.1505) / Phys. Rev. by L. Onsager (1953)
  8. R. Zwanzig, Memory effects in irreversible thermodynamics, Phys. Rev. 124:983-992 (1961). See also: S. Nakajima, Progr. Theoret. Phys. 20,948(1958); M. Mori, Progr. Theoret. Phys. 32,423(1965). (10.1103/PhysRev.124.983) / Phys. Rev. by R. Zwanzig (1961)
  9. J. L. Lebowitz, Reduced description in nonequilibrium statistical mechanics, in Proceedings of International Conference on Nonlinear Dynamics, December 1979, Annals New York Academy of Sciences, Vol. 357 (1980), pp. 150-156. / Proceedings of International Conference on Nonlinear Dynamics, December 1979 by J. L. Lebowitz (1980)
  10. Ya. G. Sinai, Introduction to Ergodic Theory (Princeton University Press, 1976).
  11. C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78:2690-2693 (1997). (10.1103/PhysRevLett.78.2690) / Phys. Rev. Lett. by C. Jarzynski (1997)
  12. J. Bricmont, Bayes, Boltzmann and Bohm: Probability in physics, in Chance in Physics, Foundations and Perspectives, J. Bricmont, D. Dürr, M. C. Galavotti, G. Ghirardi, F. Petruccione, and N. Zanghi, eds. (Springer-Verlag, 2002). (10.1007/3-540-44966-3)
  13. J. Schnakenberg, Network theory of behavior of master equation systems, Rev. Mod. Phys. 48, 571-585 (1976). (10.1103/RevModPhys.48.571) / Rev. Mod. Phys. by J. Schnakenberg (1976)
  14. G. L. Eyink, J. L. Lebowitz, and H. Spohn, Microscopic origin of hydrodynamic behavior: Entropy production and the steady state, Chaos (Soviet-American Perspectives on Nonlinear Science), D. Campbell, ed. (1990), pp. 367-391.
  15. M. Liu, The Onsager Symmetry Relation and the Time Inversion Invariance of the Entropy Production, Archive cond-mat/9806318.
  16. E. T. Jaynes, The minimum entropy production principle, Ann. Rev. Phys. Chem. 31, 579-600 (1980).Papers on Probability, Statistics and Statistical Physics, R. D. Rosencrantz, eds.(Reidel, Dordrecht, 1983). Note however that historically, the Rayleigh principle (Lord Rayleigh, Phil Mag. 26:776 (1913)), was much closer to the variational principle in mechanics. / Ann. Rev. Phys. Chem. by E. T. Jaynes (1980)
  17. J. R. Dorfman, An Introduction to chaos in nonequilibrium statistical mechanics. (Cambridge University Press, Cambridge, 1999). (10.1017/CBO9780511628870) / An Introduction to chaos in nonequilibrium statistical mechanics by J. R. Dorfman (1999)
  18. S. Sarman, D. J. Evans, and P. T. Cummings, Recent developments in non-Newtonian molecular dynamics, Physics Reports, Vol. 305, M. J. Klein, ed. (Elsevier, 1998), pp. 1-92. (10.1016/S0370-1573(98)00018-0)
  19. There is the inconvenience that different thermostats may give rise to different rates of phase space contraction under the same macroscopic conditions so that one needs very specific thermostats to get the phase space contraction coincide with the physical entropy production. See C. Wagner, R. Klages and G. Nicolis, Thermostating by deterministic scattering: Heat and shear flow, Phys. Rev. E 60:1401-1411 (1999). (10.1103/PhysRevE.60.1401) / Phys. Rev. E by C. Wagner (1999)
  20. L. Andrey, The rate of entropy change in non-Hamiltonian systems, Phys. Lett. A 11:45-46 (1985). (10.1016/0375-9601(85)90799-6) / Phys. Lett. A by L. Andrey (1985)
  21. S. Goldstein, Boltzmann's approach to statistical mechanics, in Chance in Physics, Foundations and Perspectives, J. Bricmont, D. Dürr, M. C. Galavotti, G. Ghirardi, F. Petruccione, and N. Zanghi, eds. (Springer-Verlag, 2002).
  22. J. L. Lebowitz, Microscopic origins of irreversible macroscopic behavior, Phys. A 263, 516-527 (1999). Round Table on Irreversibility at STATPHYS20, Paris, July 22, 1998. (10.1016/S0378-4371(98)00514-7) / Phys. A by J. L. Lebowitz (1999)
  23. M. Kac, Probability and Related Topics in the Physical Sciences (Interscience Pub., New York, 1959). / Probability and Related Topics in the Physical Sciences by M. Kac (1959)
  24. E.T. Jaynes, Gibbs vs Boltzmann entropies, Amer. J. Phys. 33:391-398 (1965).R. D. Rosencrantz, ed., Papers on Probability, Statistics and Statistical Physics (Reidel, Dordrecht, 1983). (10.1119/1.1971557) / Amer. J. Phys. by E.T. Jaynes (1965)
Dates
Type When
Created 22 years, 5 months ago (March 20, 2003, 7:20 p.m.)
Deposited 1 month, 3 weeks ago (July 7, 2025, 4:12 a.m.)
Indexed 3 weeks, 3 days ago (Aug. 6, 2025, 9:28 a.m.)
Issued 22 years, 7 months ago (Jan. 1, 2003)
Published 22 years, 7 months ago (Jan. 1, 2003)
Published Print 22 years, 7 months ago (Jan. 1, 2003)
Funders 0

None

@article{Maes_2003, title={Time-Reversal and Entropy}, volume={110}, ISSN={1572-9613}, url={http://dx.doi.org/10.1023/a:1021026930129}, DOI={10.1023/a:1021026930129}, number={1–2}, journal={Journal of Statistical Physics}, publisher={Springer Science and Business Media LLC}, author={Maes, Christian and Netočný, Karel}, year={2003}, month=jan, pages={269–310} }