Crossref
journal-article
Springer Science and Business Media LLC
Machine Learning (297)
References
17
Referenced
95,557
-
Amit, Y. & Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation, 9, 1545–1588.
(
10.1162/neco.1997.9.7.1545
) / Neural Computation by Y. Amit (1997) - Amit, Y., Blanchard, G., & Wilder, K. (1999). Multiple randomized classifiers: MRCL Technical Report, Department of Statistics, University of Chicago.
-
Bauer, E. & Kohavi, R. (1999). An empirical comparison of voting classification algorithms. Machine Learning, 36(1/2), 105–139.
(
10.1023/A:1007515423169
) / Machine Learning by E. Bauer (1999) -
Breiman, L. (1996a). Bagging predictors. Machine Learning 26(2), 123–140.
(
10.1023/A:1018054314350
) / Machine Learning by L. Breiman (1996) - Breiman, L. (1996b). Out-of-bag estimation, ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps
-
Breiman, L. (1998a). Arcing classifiers (discussion paper). Annals of Statistics, 26, 801–824.
(
10.1214/aos/1024691079
) / Annals of Statistics by L. Breiman (1998) - Breiman. L. (1998b). Randomizing outputs to increase prediction accuracy. Technical Report 518, May 1, 1998, Statistics Department, UCB (in press, Machine Learning).
- Breiman, L. 1999. Using adaptive bagging to debias regressions. Technical Report 547, Statistics Dept. UCB.
- Breiman, L. 2000. Some infinity theory for predictor ensembles. Technical Report 579, Statistics Dept. UCB.
- Dietterich, T. (1998). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization, Machine Learning, 1–22.
- Freund, Y. & Schapire, R. (1996). Experiments with a new boosting algorithm, Machine Learning: Proceedings of the Thirteenth International Conference, 148–156.
- Grove, A. & Schuurmans, D. (1998). Boosting in the limit: Maximizing the margin of learned ensembles. In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98).
-
Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(8), 832–844.
(
10.1109/34.709601
) / IEEE Trans. on Pattern Analysis and Machine Intelligence by T. K. Ho (1998) -
Kleinberg, E. (2000). On the algorithmic implementation of stochastic discrimination. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(5), 473–490.
(
10.1109/34.857004
) / IEEE Trans. on Pattern Analysis and Machine Intelligence by E. Kleinberg (2000) - Schapire, R., Freund, Y., Bartlett, P., & Lee,W. (1998). Boosting the margin:Anewexplanation for the effectiveness of voting methods. Annals of Statistics, 26(5), 1651–1686. / Annals of Statistics by R. Schapire (1998)
- Tibshirani, R. (1996). Bias, variance, and prediction error for classification rules. Technical Report, Statistics Department, University of Toronto.
- Wolpert, D. H. & Macready, W. G. (1997). An efficient method to estimate Bagging's generalization error (in press, Machine Learning).
Dates
Type | When |
---|---|
Created | 22 years, 7 months ago (Dec. 22, 2002, 6:10 p.m.) |
Deposited | 1 month, 1 week ago (July 10, 2025, 7:46 a.m.) |
Indexed | 38 minutes ago (Aug. 21, 2025, 6:26 a.m.) |
Issued | 23 years, 10 months ago (Oct. 1, 2001) |
Published | 23 years, 10 months ago (Oct. 1, 2001) |
Published Print | 23 years, 10 months ago (Oct. 1, 2001) |
@article{Breiman_2001, title={Random Forests}, volume={45}, ISSN={1573-0565}, url={http://dx.doi.org/10.1023/a:1010933404324}, DOI={10.1023/a:1010933404324}, number={1}, journal={Machine Learning}, publisher={Springer Science and Business Media LLC}, author={Breiman, Leo}, year={2001}, month=oct, pages={5–32} }