Crossref
journal-article
American Chemical Society (ACS)
Nano Letters (316)
References
29
Referenced
61
10.1038/nmat1849
/ Nat. Mater. by Geim A. K. (2007)10.1021/nl803316h
/ Nano Lett. by Lin Y. M. (2009){'key': 'ref3/cit3', 'author': 'Bae M. H.', 'year': '2010', 'journal-title': 'Nano Lett.'}
/ Nano Lett. by Bae M. H. (2010)10.1103/PhysRevLett.104.227401
/ Phys. Rev. Lett. by Berciaud S. (2010)10.1021/nl903167f
/ Nano Lett by Chae D. H. (2010)10.1038/nnano.2010.90
/ Nat. Nanotechnol. by Freitag M. (2010)10.1021/nl803883h
/ Nano Lett. by Freitag M. (2009)10.1063/1.2771379
/ Appl. Phys. Lett. by Calizo I. (2007)10.1103/PhysRevB.80.165413
/ Phys. Rev. B by Basko D. M. (2009)10.1103/PhysRevLett.99.176802
/ Phys. Rev. Lett. by Bonini N. (2007)10.1038/nnano.2008.67
/ Nat. Nanotechnol. by Das A. (2008)10.1063/1.3075065
/ Appl. Phys. Lett. by Prasher R. (2009)10.1126/science.1184014
/ Science by Seol J. H. (2010)10.1115/1.1447939
/ J. Heat Transfer - Trans. ASME by Shi L. (2002)10.1063/1.3126708
/ J. Appl. Phys. by Shi L. (2009)10.1063/1.3033545
/ Appl. Phys. Lett. by Kim K. (2008)10.1063/1.3077021
/ Appl. Phys. Lett. by Kim S. (2009)10.1068/htwi9
/ High Temp. - High Pressures by Cahill D. G. (2000)10.1063/1.112933
/ Appl. Phys. Lett. by Kading O. W. (1994)10.1063/1.371314
/ J. Appl. Phys. by Kim J. H. (1999)10.1063/1.1481958
/ J. Appl. Phys. by Yamane T. (2002)10.1063/1.3006335
/ Rev. Sci. Instrum. by Schmidt A. J. (2008)10.1063/1.3245315
/ Appl. Phys. Lett. by Chen Z. (2009)10.1021/nl903162a
/ Nano Lett. by Lafkioti M. (2010)10.1063/1.1394718
/ Appl. Phys. Lett. by Zilker S. J. (2001)10.1063/1.1458057
/ J. Appl. Phys. by Asheghi M. (2002)10.1103/PhysRevLett.97.187401
/ Phys. Rev. Lett. by Ferrari A. C. (2006)- The thermal resistance of the SiO2spacer between the graphene and the Si substrate is estimated asRSiO2≈tSiO2/(κSiO2WL), wheretSiO2= 300 nm andκSiO2are the thickness and the thermal conductivity of the SiO2film, respectively, andWandLare the width and length of the graphene channel, respectively. The spreading thermal resistance of the Si substrate is calculated using the conduction shape factor asRSi≈ 1/(2κSi(WL)1/2),(29)whereκSiis the thermal conductivity of the silicon substrate. The thermal resistance for lateral heat spreading from the graphene to the metal electrodes is on the order ofRg≈L/(2κgWt), whereκgandtare the thermal conductivity and thickness of the supported graphene, respectively. Compared toRg, the thermal resistance of the relatively thick metal electrodes of high thermal conductivity is negligible, as verified by the negligible heating measured on top of the metal electrodes by SThM.
- Incropera, F. P.; Dewitt, D. P.; Bergman, T. L.; Lavine, A. S.Fundamentals of Heat and Mass Transfer;John Wiley & Sons:New York, 2007; pp210.
Dates
Type | When |
---|---|
Created | 14 years, 8 months ago (Dec. 2, 2010, 12:22 p.m.) |
Deposited | 2 years, 4 months ago (April 7, 2023, 6:46 p.m.) |
Indexed | 2 months, 2 weeks ago (June 10, 2025, 2:02 a.m.) |
Issued | 14 years, 8 months ago (Dec. 2, 2010) |
Published | 14 years, 8 months ago (Dec. 2, 2010) |
Published Online | 14 years, 8 months ago (Dec. 2, 2010) |
Published Print | 14 years, 7 months ago (Jan. 12, 2011) |
@article{Jo_2010, title={Low-Frequency Acoustic Phonon Temperature Distribution in Electrically Biased Graphene}, volume={11}, ISSN={1530-6992}, url={http://dx.doi.org/10.1021/nl102858c}, DOI={10.1021/nl102858c}, number={1}, journal={Nano Letters}, publisher={American Chemical Society (ACS)}, author={Jo, Insun and Hsu, I-Kai and Lee, Yong J. and Sadeghi, Mir Mohammad and Kim, Seyoung and Cronin, Stephen and Tutuc, Emanuel and Banerjee, Sanjay K. and Yao, Zhen and Shi, Li}, year={2010}, month=dec, pages={85–90} }