Crossref journal-article
American Chemical Society (ACS)
Journal of the American Chemical Society (316)
Bibliography

Ryan, K., Lengyel, J., & Shatruk, M. (2018). Crystal Structure Prediction via Deep Learning. Journal of the American Chemical Society, 140(32), 10158–10168.

Authors 3
  1. Kevin Ryan (first)
  2. Jeff Lengyel (additional)
  3. Michael Shatruk (additional)
References 78 Referenced 309
  1. {'volume-title': 'Modern Methods of Crystal Structure Prediction', 'year': '2011', 'author': 'Oganov A. R.', 'key': 'ref1/cit1'} / Modern Methods of Crystal Structure Prediction by Oganov A. R. (2011)
  2. {'key': 'ref2/cit2', 'volume-title': 'The Nature of the Chemical Bond and the Structure of Molecules and Crystals. An Introduction to Modern Structural Chemistry', 'author': 'Pauling L. C.', 'year': '1960', 'edition': '3'} / The Nature of the Chemical Bond and the Structure of Molecules and Crystals. An Introduction to Modern Structural Chemistry by Pauling L. C. (1960)
  3. 10.1039/tf9292500253
  4. 10.1515/zpch-1922-10114 / Z. Phys. Chem. by Wasastjerna J. A. (1922)
  5. 10.1098/rspa.1927.0035
  6. 10.1016/0038-1098(81)90099-5
  7. 10.1107/S0365110X59002857
  8. {'key': 'ref8/cit8', 'first-page': '73', 'volume-title': 'Structure and Bonding in Crystals', 'volume': '1', 'author': 'Zunger A.', 'year': '1981'} / Structure and Bonding in Crystals by Zunger A. (1981)
  9. {'key': 'ref9/cit9', 'first-page': '49', 'volume-title': 'Structure and Bonding in Crystals', 'volume': '1', 'author': 'Bloch A. N.', 'year': '1981'} / Structure and Bonding in Crystals by Bloch A. N. (1981)
  10. 10.1016/S0081-1947(08)60690-6
  11. 10.1179/mst.1988.4.8.675
  12. 10.1098/rsta.1991.0024
  13. 10.1103/PhysRevLett.91.135503
  14. 10.1038/nmat1691
  15. 10.1103/PhysRevB.85.155208
  16. 10.1002/aenm.201400478
  17. 10.1038/ncomms8308
  18. 10.1021/acs.chemmater.6b03221
  19. 10.1021/ja311599g
  20. 10.1038/nchem.2207
  21. 10.1039/C7SC03961A
  22. 10.1038/nchem.2716
  23. 10.1038/nature07736
  24. 10.1038/npjcompumats.2015.10
  25. 10.1039/C8EE00306H
  26. 10.1021/acs.chemmater.7b04496
  27. 10.1021/acs.inorgchem.6b00881
  28. 10.1088/1361-648X/aa63cd
  29. 10.1103/PhysRevX.7.019903
  30. 10.1021/ic5030235
  31. 10.1021/jacs.5b10180
  32. 10.1016/j.cpc.2017.09.011
  33. 10.1021/jacs.7b08460
  34. 10.1021/acs.accounts.7b00490
  35. {'volume-title': 'Complex Metallic Alloys: Fundamentals and Applications', 'year': '2011', 'author': 'Dubois J. M.', 'key': 'ref35/cit35'} / Complex Metallic Alloys: Fundamentals and Applications by Dubois J. M. (2011)
  36. 10.1021/ic049897h
  37. 10.1002/anie.200601678
  38. 10.1021/acs.accounts.7b00625
  39. 10.1021/ic200643f
  40. 10.1021/cr1001222
  41. 10.1107/S0021889805002384
  42. 10.1016/j.cpc.2006.07.020
  43. 10.1016/j.calphad.2005.04.003
  44. 10.1038/nchem.2207
  45. 10.1016/S0022-2860(02)00519-7
  46. 10.1063/1.2210932
  47. 10.1038/nature14539
  48. 10.1002/jcc.24764
  49. 10.1107/S205225251700714X
  50. 10.1021/acscentsci.6b00219
  51. 10.1021/acscombsci.6b00136
  52. 10.1038/ncomms13890
  53. 10.1021/acscentsci.7b00064
  54. 10.1021/acscentsci.7b00405
  55. 10.1021/acscentsci.7b00512
  56. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; Kudlur, M.; Levenberg, J.; Monga, R.; Moore, S.; Murray, D. G.; Steiner, B.; Tucker, P.; Vasudevan, V.; Warden, P.; Wicke, M.; Yu, Y.; Zheng, X., TensorFlow: a system for large-scale machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 2016.
  57. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A., Automatic differentiation in PyTorch. NIPS 2017 Workshop Autodiff Submissions, Long Beach, CA, 2017.
  58. {'key': 'ref58/cit58', 'first-page': '2825', 'volume': '12', 'author': 'Pedregosa F.', 'year': '2011', 'journal-title': 'J. Machine Learn. Res.'} / J. Machine Learn. Res. by Pedregosa F. (2011)
  59. 10.1109/TPAMI.2013.50
  60. 10.1039/C7SC04665K
  61. 10.1021/acs.chemmater.7b00156
  62. Jones, E.; Oliphant, T.; Peterson, P. SciPy: open source scientific tools for Python, 2001; http://www.scipy.org/.
  63. {'key': 'ref64/cit64', 'first-page': '2579', 'volume': '9', 'author': 'Maaten L. v. d.', 'year': '2008', 'journal-title': 'J. Machine Learn. Res.'} / J. Machine Learn. Res. by Maaten L. v. d. (2008)
  64. 10.1109/MCSE.2007.55
  65. 10.1107/S0108767310026395
  66. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3D shape recognition. Proc. IEEE Int. Conf. Comp. Vision; Chile, 2015; IEEE, 2015; pp 945–953. (10.1109/ICCV.2015.114)
  67. Pascanu, R.; Mikolov, T.; Bengio, Y., On the difficulty of training recurrent neural networks. In International Conference on Machine Learning; Atlanta, GA, 2013; IMLS, 2013; pp 1310–1318.
  68. 10.1364/OE.19.026891
  69. 10.1109/TKDE.2008.239
  70. {'key': 'ref73/cit73', 'first-page': '25', 'volume': '30', 'author': 'Kotsiantis S.', 'year': '2006', 'journal-title': 'GESTS Int. Trans. Comput. Sci. Eng.'} / GESTS Int. Trans. Comput. Sci. Eng. by Kotsiantis S. (2006)
  71. {'key': 'ref74/cit74', 'first-page': '1312', 'author': 'Kingma D. P.', 'year': '2013', 'journal-title': 'arXiv.org'} / arXiv.org by Kingma D. P. (2013)
  72. {'key': 'ref75/cit75', 'first-page': '249', 'volume': '9', 'author': 'Glorot X.', 'year': '2010', 'journal-title': 'Proc. Machine Learn. Res.'} / Proc. Machine Learn. Res. by Glorot X. (2010)
  73. {'key': 'ref76/cit76', 'first-page': '448', 'volume': '37', 'author': 'Ioffe S.', 'year': '2015', 'journal-title': 'Proc. Machine Learn. Res.'} / Proc. Machine Learn. Res. by Ioffe S. (2015)
  74. {'year': '2016', 'author': 'Wattenberg M.', 'journal-title': 'Distill', 'key': 'ref78/cit78'} / Distill by Wattenberg M. (2016)
  75. {'volume-title': 'Proc. IEEE conf. comp. vision pattern recognition', 'year': '2015', 'author': 'Szegedy C.', 'key': 'ref79/cit79'} / Proc. IEEE conf. comp. vision pattern recognition by Szegedy C. (2015)
  76. 10.1038/nature17439
  77. 10.1109/CVPR.2014.81
  78. 10.1557/mrs2006.226
Dates
Type When
Created 7 years, 2 months ago (June 6, 2018, 5:22 p.m.)
Deposited 2 years, 4 months ago (April 23, 2023, 12:12 p.m.)
Indexed 4 days, 12 hours ago (Aug. 23, 2025, 9:44 p.m.)
Issued 7 years, 2 months ago (June 6, 2018)
Published 7 years, 2 months ago (June 6, 2018)
Published Online 7 years, 2 months ago (June 6, 2018)
Published Print 7 years ago (Aug. 15, 2018)
Funders 2
  1. Oak Ridge National Laboratory 10.13039/100006228

    Region: Americas

    gov (Research institutes and centers)

    Labels3
    1. Oak Ridge National Lab
    2. Oak Ridge National Laboratory, U.S. Dept. of Energy
    3. ORNL
    Awards1
    1. 4000122380
  2. Division of Materials Research 10.13039/100000078

    Region: Americas

    gov (National government)

    Labels4
    1. NSF Division of Materials Research
    2. Materials Research
    3. DMR
    4. MPS/DMR
    Awards1
    1. 1507233

@article{Ryan_2018, title={Crystal Structure Prediction via Deep Learning}, volume={140}, ISSN={1520-5126}, url={http://dx.doi.org/10.1021/jacs.8b03913}, DOI={10.1021/jacs.8b03913}, number={32}, journal={Journal of the American Chemical Society}, publisher={American Chemical Society (ACS)}, author={Ryan, Kevin and Lengyel, Jeff and Shatruk, Michael}, year={2018}, month=jun, pages={10158–10168} }