Crossref journal-article
American Chemical Society (ACS)
Journal of the American Chemical Society (316)
Bibliography

Buonsanti, R., Grillo, V., Carlino, E., Giannini, C., Gozzo, F., Garcia-Hernandez, M., Garcia, M. A., Cingolani, R., & Cozzoli, P. D. (2010). Architectural Control of Seeded-Grown Magnetic−Semicondutor Iron Oxide−TiO2 Nanorod Heterostructures: The Role of Seeds in Topology Selection. Journal of the American Chemical Society, 132(7), 2437–2464.

Authors 9
  1. Raffaella Buonsanti (first)
  2. Vincenzo Grillo (additional)
  3. Elvio Carlino (additional)
  4. Cinzia Giannini (additional)
  5. Fabia Gozzo (additional)
  6. Mar Garcia-Hernandez (additional)
  7. Miguel Angel Garcia (additional)
  8. Roberto Cingolani (additional)
  9. P. Davide Cozzoli (additional)
References 138 Referenced 134
  1. 10.1039/b517790c / Chem. Soc. Rev. by Cozzoli P. D. (2006)
  2. 10.2174/187221007782360420 / Recent Pat. Nanotechnol. by Buonsanti R. (2007)
  3. 10.1002/ejic.200701047 / Eur. J. Inorg. Chem. by Casavola M. (2008)
  4. {'key': 'ref1/cit1d', 'first-page': '407', 'volume-title': 'Advanced Wet-Chemical Synthetic Approaches to Inorganic Nanostructures', 'author': 'Caputo G.'} / Advanced Wet-Chemical Synthetic Approaches to Inorganic Nanostructures by Caputo G.
  5. 10.1039/B614735F / Chem. Commun. by Jun Y.-w. (2007)
  6. 10.1021/ar9000026 / Acc. Chem. Res. by Gao J. (2009)
  7. 10.1021/ja051713q / J. Am. Chem. Soc. by Kwon K. W. (2005)
  8. 10.1021/cm0621390 / Chem. Mater. by Kwon K.-W. (2006)
  9. 10.1021/nn800737a / ACS Nano by McDaniel H. (2009)
  10. 10.1002/anie.200602559 / Angew. Chem., Int. Ed. by Mokari T. (2006)
  11. 10.1021/nl0600833 / Nano Lett. by Shi W. (2006)
  12. {'key': 'ref5/cit5b', 'author': 'Franchini I. R.', 'year': '2010', 'journal-title': 'J. Mater. Chem.'} / J. Mater. Chem. by Franchini I. R. (2010)
  13. 10.1021/ja062494r / J. Am. Chem. Soc. by Yang J. (2006)
  14. 10.1002/anie.200806036 / Angew. Chem., Int. Ed. by Yang J. (2009)
  15. 10.1021/nl047955q / Nano Lett. by Yu H. (2005)
  16. 10.1002/smll.200800511 / Small by Wei Y. (2008)
  17. 10.1002/adma.200600685 / Adv. Mater. by Shi W. (2006)
  18. 10.1021/ja0731017 / J. Am. Chem. Soc. by Gao J. (2007)
  19. 10.1021/ja0496423 / J. Am. Chem. Soc. by Gu H. W. (2004)
  20. 10.1039/b902189b / Chem. Commun. by Saruyama M. (2009)
  21. 10.1039/b9nr00110g / Nanoscale by Teranishi T. (2009)
  22. 10.1038/nature02695 / Nature by Milliron D. J. (2004)
  23. 10.1021/nl072003g / Nano Lett. by Talapin D. V. (2007)
  24. 10.1021/ja903722d / J. Am. Chem. Soc. by Zhong H. (2009)
  25. 10.1021/nl0717661 / Nano Lett. by Carbone L. (2007)
  26. 10.1021/nl9017918 / Nano Lett. by Carbone L. (2009)
  27. 10.1038/nmat1505 / Nat. Mater. by Mokari T. (2005)
  28. 10.1021/jp065594s / J. Phys. Chem. B by Saunders A. E. (2006)
  29. 10.1021/ja9077733 / J. Am. Chem. Soc. by Menagen G. (2009)
  30. 10.1021/nl048060g / Nano Lett. by Kudera S. (2005)
  31. 10.1002/anie.200804798 / Angew. Chem., Int. Ed. by Maynadiè J. (2009)
  32. 10.1021/ja904493c / J. Am. Chem. Soc. by Deka S. (2009)
  33. 10.1021/nl070550w / Nano Lett. by Casavola M. (2007)
  34. 10.1021/jp0756911 / J. Phys. Chem. C by Cheng C. (2007)
  35. 10.1002/anie.200702017 / Angew. Chem., Int. Ed. by Wetz F. (2007)
  36. 10.1039/b801696h / J. Mater. Chem. by Lin Z.-H. (2008)
  37. 10.1021/la901093c / Langmuir by Vinod T. P. (2009)
  38. 10.1126/science.1142593 / Science by Robinson R. D. (2007)
  39. 10.1021/ja066557h / J. Am. Chem. Soc. by Buonsanti R. (2006)
  40. 10.1039/b821964h / Phys. Chem. Chem. Phys. by Buonsanti R. (2009)
  41. 10.1002/3527602097 / The Iron Oxides: Structures, Properties, Occurrences and Uses by Cornell R. M. (2003)
  42. 10.1021/cr068445e / Chem. Rev. by Laurent S. (2008)
  43. 10.1021/es051044g / Environ. Sci. Technol. by Chun C. L. (2005)
  44. 10.1021/es049635e / Environ. Sci. Technol. by Danielsen K. (2005)
  45. 10.1021/es9003608 / Environ. Sci. Technol. by Wiatrowski H. A. (2009)
  46. 10.1021/es803613a / Environ. Sci. Technol. by Gorski C. A. (2009)
  47. 10.1021/es049373g / Environ. Sci. Technol. by Williams A. G. B. (2004)
  48. 10.1126/science.1131475 / Science by Yavuz C. T. (2006)
  49. 10.1021/es071553d / Environ. Sci. Technol. by Zeng H. (2008)
  50. 10.1021/ac050831t / Anal. Chem. by Chen C. T. (2005)
  51. 10.1039/B716055K / Chem. Commun. by Li Y. (2008)
  52. 10.1021/cr00033a004 / Chem. Rev. by Hoffmann M. R. (1995)
  53. 10.1021/cr0500535 / Chem. Rev. by Chen X. (2007)
  54. 10.1016/j.surfrep.2008.10.001 / Surf. Sci. Rep. by Fujishima A. (2008)
  55. 10.1039/f19848002619 / J. Chem. Soc., Faraday Trans. by Tronc E. (1984)
  56. 10.1016/j.chemosphere.2007.02.028 / Chemosphere by Jung Y. (2007)
  57. 10.1021/es062082i / Environ. Sci. Technol. by Vikesland P. J. (2007)
  58. 10.1016/0021-9797(90)90228-G / J. Colloid Interface Sci. by Jolivet J. P. (1990)
  59. 10.1021/jp992088c / J. Phys. Chem. B by Beydoun D. (2000)
  60. 10.1016/S1381-1169(01)00429-0 / J. Mol. Catal. A by Beydoun D. (2002)
  61. 10.1016/S0254-0584(02)00515-1 / Mater. Chem. Phys. by Gao Y. (2003)
  62. 10.1016/j.seppur.2007.12.007 / Sep. Pur. Technol. by Ao Y. (2008)
  63. 10.1021/jp809835a / J. Phys. Chem. C by Wang C. (2009)
  64. 10.1016/j.apcatb.2008.09.012 / Appl. Catal., B by Belessi V. (2009)
  65. 10.1038/nnano.2007.217 / Nat. Nanotechnol. by Dames P. (2007)
  66. 10.1002/smll.200600488 / Small by Seo J.-w. (2007)
  67. 10.1038/nmat875 / Nat. Mater. by Paunesku T. (2003)
  68. 10.1021/ac900916s / Anal. Chem. by Tsai M.-C. (2009)
  69. 10.1021/ja0772389 / J. Am. Chem. Soc. by Endres P. J. (2007)
  70. 10.1021/nl0624723 / Nano Lett. by Paunesku T. (2007)
  71. 10.1021/ja803559b / J. Am. Chem. Soc. by Buonsanti R. (2008)
  72. 10.1051/mmm:1997105 / Microsc. Microanal. Microstruct. by Hÿtch M. J. (1997)
  73. Grillo, V.STEM-CELL; available online athttp://tem.s3.infm.it/software.
  74. 10.1016/S0304-3991(98)00035-7 / Ultramicroscopy by Hÿtch M. J. (1998)
  75. 10.1039/b503774c / Chem. Commun. by Cozzoli P. D. (2005)
  76. 10.1021/nl0340071 / Nano Lett. by Jakob M. (2003)
  77. 10.1021/ja0315199 / J. Am. Chem. Soc. by Subramanian V. (2004)
  78. 10.1021/ja056139x / J. Am. Chem. Soc. by Casula M. F. (2006)
  79. 10.1038/nmat1251 / Nat. Mater. by Park J. (2004)
  80. 10.1002/anie.200461665 / Angew. Chem., Int. Ed. by Park J. (2005)
  81. 10.1021/ja074633q / J. Am. Chem. Soc. by Kwon S. G. P., Y. (2007)
  82. 10.1002/anie.200503821 / Angew. Chem., Int. Ed. by Jun Y.-w. (2006)
  83. bManna, L. and Kudera, S.Mechanisms underlying the growth of inorganic nanoparticles in the liquid phase. InAdvanced Wet-Chemical Synthetic Approaches to Inorganic Nanostructures;Cozzoli, P. D., Ed.Transworld Research Network:Kerala, India; pp1−53.
  84. 10.1016/S0304-3991(00)00099-1 / Ultramicroscopy by Hytch M. J. (2001)
  85. 10.1046/j.1365-2818.1998.3100866.x / J. Microsc. by Seitz H. (1997)
  86. 10.1002/adma.200390107 / Adv. Mater. by Peng X. (2003)
  87. 10.1021/ja0027766 / J. Am. Chem. Soc. by Peng Z. A. (2001)
  88. 10.1063/1.1713333 / J. Appl. Phys. by Mullins W. W. (1964)
  89. {'key': 'ref37/cit37b', 'volume-title': 'Crystallization', 'author': 'Mullin J. W.', 'year': '2001', 'edition': '4'} / Crystallization by Mullin J. W. (2001)
  90. 10.1021/ja003055+ / J. Am. Chem. Soc. by Manna L. (2000)
  91. {'key': 'ref39/cit39', 'volume-title': 'The Role of the Coincidence Site Lattice in Grain Boundary Engineering', 'author': 'Randle V.', 'year': '1997'} / The Role of the Coincidence Site Lattice in Grain Boundary Engineering by Randle V. (1997)
  92. 10.1142/5172 / Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy by Markov I. V. (2003)
  93. 10.1134/1.1529921 / Phys. Solid State by Krivtsov A. M. (2002)
  94. 10.1021/jp801555a / J. Phys. Chem. C by Park S.-w. (2008)
  95. 10.1021/nn900202x / ACS Nano by Shokuhfar T. (2009)
  96. 10.1016/j.actbio.2006.08.004 / Acta Biomater. by Crawford G. A. (2007)
  97. 10.1103/PhysRevB.27.2111 / Phys. Rev. B by Grunes L. A. (1983)
  98. 10.1021/jp9047677 / J. Phys. Chem. C by Corrias A. (2009)
  99. 10.1016/j.jmmm.2003.12.1313 / J. Magn. Magn. Mater. by Lelis M. F. F. (2004)
  100. 10.2138/am-2001-5-612 / Am. Mineral. by Wilke M. (2001)
  101. 10.1021/jp025544x / J. Phys. Chem. B by Chen L. X. (2002)
  102. 10.1016/j.vacuum.2005.08.012 / Vacuum by Arcon I. (2005)
  103. 10.1088/1742-6596/190/1/012169 / J. Phys. Conf. Ser. by Ichikuni N. (2009)
  104. 10.1007/s100510051079 / Eur. Phys. J. B by Kachkachi H. (2000)
  105. 10.1088/0022-3727/35/7/101 / J. Phys. D: Appl. Phys. by Batlle X. (2002)
  106. 10.1021/jp027048e / J. Phys. Chem. B by Tang J. (2003)
  107. 10.1103/PhysRevB.71.125411 / Phys. Rev. B by He Y. P. (2005)
  108. 10.1016/j.gca.2005.01.023 / Geochim. Cosmochim. Acta by Sherman D. M. (2005)
  109. 10.1021/es00047a010 / Environ. Sci. Technol. by Pehkonen S. O. (2002)
  110. 10.1021/jp807336t / J. Phys. Chem. C by Cwiertny D. M. (2008)
  111. 10.1021/la7021165 / Langmuir by Du W. (2007)
  112. 10.1016/j.marchem.2004.08.006 / Mar. Chem. by Borer P. M. (2005)
  113. 10.1021/ja0395846 / J. Am. Chem. Soc. by Cozzoli P. D. (2004)
  114. 10.1021/jp066952u / J. Phys. Chem. C by Kamat P. V. (2007)
  115. 10.1016/j.molstruc.2008.10.048 / J. Mol. Struct. by Gotic M. (2009)
  116. 10.1016/j.colsurfa.2004.05.009 / Colloids Surf., A by Sun Y.-k. (2004)
  117. 10.1007/BF02397492 / Hyperfine Interact. by Helgason Ö. (1992)
  118. 10.1021/jp0379751 / J. Phys. Chem. B by Cozzoli P. D. (2004)
  119. 10.1016/j.msec.2003.09.101 / Mater. Sci. Eng., C by Cozzoli P. D. (2003)
  120. 10.1021/la00018a024 / Langmuir by Vinodgopal K. (2002)
  121. 10.1021/ja00025a064 / J. Am. Chem. Soc. by Kamat P. V. (1991)
  122. 10.1021/j100088a008 / J. Phys. Chem. by Kamat P. V. (1994)
  123. 10.1021/cm802495p / Chem. Mater. by Kontos A. I. (2009)
  124. 10.1007/s10800-009-9944-9 / J. Appl. Electrochem. by Laouini E. (2009)
  125. The universal relation holding between ΔGhet* and ΔGhom*  (eq 1) has been clarified within the frame of simplified models (see refs34b,37b), in which a “nucleus” of a secondary material (FexOyin the present case) heterogeneously deposited on a pre-existent seed (b-TiO2in our case) is regarded as a “droplet” that has condensed thereon, forming a contact angle, θ, with the substrate underneath: ΔGhet*  =f(θ)ΔGhom* , where the wetting function,f(θ), that defines the degree of “wetting” achievable is 0 <f(θ) < 1, and depends on the particular system geometry (e.g., shape of the substrate and of the droplet) and on the interfacial tension equilibrium attained at the three-boundary TiO2/FexOy/solution region according to the Young’s relation: σTiO2= σFexOy*cos θ + σTiO2/FexOy, where σTiO2and σFexOyare the specific solid/solution tensions associated with the two materials, and σTiO2/FexOyis the specific solid/solid TiO2/FexOytension. Note that the barrier for nuclei growth, ΔGgrowth*, is far smaller than both ΔGhom*  and ΔGhet*  and corresponds to the limiting case of complete wetting (f(θ) → 0 forθ → 0).
  126. 10.1021/nl803151n / Nano Lett. by Casavola M. (2009)
  127. 10.1103/PhysRevLett.90.097402 / Phys. Rev. Lett. by Li L. S. (2003)
  128. 10.1103/PhysRevB.78.195313 / Phys. Rev. B by Morello G. (2008)
  129. 10.1021/ja036505h / J. Am. Chem. Soc. by Cozzoli P. D. (2003)
  130. 10.1021/jp0777061 / J. Phys. Chem. C by Caputo G. (2008)
  131. 10.1016/0304-8853(95)00446-7 / J. Magn. Magn. Mater. by Schmidbauer E. (1996)
  132. 10.1021/ja0768744 / J. Am. Chem. Soc. by Salazar-Alvarez G. (2008)
  133. 10.1016/j.jmmm.2003.09.005 / J. Magn. Magn. Mater. by Horng L. (2004)
  134. 10.1016/j.jmmm.2004.08.004 / J. Magn. Magn. Mater. by Bollero A. (2005)
  135. 10.1103/PhysRevB.79.144405 / Phys. Rev. B by Serrano A. (2009)
  136. 10.1063/1.2399884 / J. Appl. Phys. by Quesada A. (2006)
  137. cGarcia, M. A., Jiménez-Villacorta, F., Quesada, A., de la Venta, J., Carmona, N., Lorite, I., Llopis, J., and Fernández, J. F.J. Appl. Phys.,in press (available online athttp://arxiv.org/abs/0912.3458).
  138. 10.1088/0957-4484/18/45/455704 / Nanotechnology by Shendruk T. N. (2007)
Dates
Type When
Created 15 years, 7 months ago (Feb. 1, 2010, 10:45 a.m.)
Deposited 2 years, 5 months ago (April 2, 2023, 9:14 a.m.)
Indexed 1 year ago (Aug. 5, 2024, 11:50 a.m.)
Issued 15 years, 7 months ago (Feb. 1, 2010)
Published 15 years, 7 months ago (Feb. 1, 2010)
Published Online 15 years, 7 months ago (Feb. 1, 2010)
Published Print 15 years, 6 months ago (Feb. 24, 2010)
Funders 0

None

@article{Buonsanti_2010, title={Architectural Control of Seeded-Grown Magnetic−Semicondutor Iron Oxide−TiO2 Nanorod Heterostructures: The Role of Seeds in Topology Selection}, volume={132}, ISSN={1520-5126}, url={http://dx.doi.org/10.1021/ja910322a}, DOI={10.1021/ja910322a}, number={7}, journal={Journal of the American Chemical Society}, publisher={American Chemical Society (ACS)}, author={Buonsanti, Raffaella and Grillo, Vincenzo and Carlino, Elvio and Giannini, Cinzia and Gozzo, Fabia and Garcia-Hernandez, Mar and Garcia, Miguel Angel and Cingolani, Roberto and Cozzoli, P. Davide}, year={2010}, month=feb, pages={2437–2464} }