Bibliography
Ferbinteanu, M., Miyasaka, H., Wernsdorfer, W., Nakata, K., Sugiura, K., Yamashita, M., Coulon, C., & Clérac, R. (2005). Single-Chain Magnet (NEt4)[Mn2(5-MeOsalen)2Fe(CN)6] Made of MnIIIâFeIIIâMnIII Trinuclear Single-Molecule Magnet with an ST = 9/2 Spin Ground State. Journal of the American Chemical Society, 127(9), 3090â3099.
References
97
Referenced
426
10.1557/mrs2000.226
10.1002/anie.200390099
10.1021/ja0203115
10.1126/science.284.5411.133
10.1038/35071024
10.1021/ja00233a036
10.1021/ja00015a057
10.1021/ja00058a027
10.1021/ja960970f
10.1021/ic000237w
10.1021/ic0012928
10.1021/ja012403k
10.1021/ja026407g
10.1039/b206386g
10.1021/ja0367086
10.1002/anie.200353563
10.1002/anie.200353352
10.1021/ja0316824
10.1021/ja0297638
10.1021/ic049620h
10.1021/ic0353864
10.1039/b312672b
/ J. Chem. Soc., Dalton Trans. by Wittick L. M. (2004)10.1021/ic00066a022
10.1021/ja9818755
10.1039/a908254i
10.1021/ja002889p
10.1021/ic000840e
10.1039/b002135k
10.1021/ja0487933
10.1039/b108894g
10.1002/1521-3765(20021104)8:21%3C4867::AID-CHEM4867%3E3.0.CO;2-R
10.1016/S0277-5387(03)00149-9
10.1002/ejic.200400129
10.1021/ja9732439
10.1063/1.1450813
10.1021/ic00104a009
10.1021/ja0263846
10.1021/ja035478s
10.1021/ic035327q
10.1021/ja037365e
10.1002/anie.200454013
- gMiyasaka, H.; Nezu, T.; Sugimoto, K.; Sugiura, K.; Yamashita, M.; Clérac, R. Chem.─Eur. J. In press.
10.1063/1.1703954
10.1143/JPSJ.24.51
- In ref (11)a, the energy barrier, ΔGlauber, is equal to 4J based on the following Hamiltonian: H = −J∑i σiσi+1 with σi = ±1. In this paper, we have used H = −2J∑i STziSTz(i+1), which is equivalent with Glauber's notation to H = −2JST2∑i σiσi+1. Therefore, with this Hamiltonian definition, the energy gap, ΔGlauber, is 8JST2.
10.1002/1521-3773(20010504)40:9%3C1760::AID-ANIE17600%3E3.0.CO;2-U
10.1002/1521-3765(20020104)8:1%3C286::AID-CHEM286%3E3.0.CO;2-D
10.1209/epl/i2002-00416-x
10.1103/PhysRevLett.92.207204
10.1021/ic034872o
- (a) Chang, F.; Gao, S.; Sun, H.L.; Hou, Y.L.; Su, G. Proceedings of the ICSM 2002 Conference; Shanghai, China, 2002.
10.1002/anie.200250243
10.1039/b302182n
10.1002/adma.200400253
10.1021/ja0380751
10.1021/ic035072g
10.1021/ja0483995
10.1021/ic0494049
10.1103/PhysRevB.69.132408
10.1021/ic035327q
10.1002/anie.199514461
10.1021/ja952706c
10.1021/ic9608814
{'key': 'ja0468123b00019/ja0468123b00019_4', 'first-page': '25', 'volume': '37', 'author': 'Miyasaka H.', 'year': '1998', 'journal-title': 'Inorg. Chem.'}
/ Inorg. Chem. by Miyasaka H. (1998)10.1039/a805388j
10.1021/ic00204a029
10.1021/ic00223a001
- Boudreaux, E. A.; Mulay, L. N. Theory and Applications of Molecular Paramagnetism; John Wiley & Sons: New York, 1976.
10.1002/9780470141786.ch3
- Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. DIRDIF; Technical Report of the Crystallography Laboratory; University of Nijmengen: The Netherlands, 1992.
- DIRDIF94; Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. University of Nijmengen: The Netherlands, 1994.
- Cromer, D. T.; Waber, J. T. International Tables for Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. 4, Table 2.2A.
- Creagh, D. C.; McAuley, W. J. International Tables for Crystallography; Wilson, A. J. C., Ed.; Kluwer Academic Publishers: Boston, 1992; Vol. C, Table 4.2.6.8, pp 219−222.
- Creagh, D. C.; Hubbell, J. H. International Tables for Crystallography; Wilson, A. J. C., Ed.; Kluwer Academic Publishers: Boston, 1992; Vol. C, Table 4.2.4.3, pp 200−206.
- CrystalStructure 3.15, Crystal Structure Analysis Package; Rigaku and Rigaku/MSC: The Woodlands, TX, 2000−2002.
10.1021/ic980448p
10.1021/ic026261m
10.1021/ic0003022
10.1021/ic035464n
10.1021/ic960556g
10.1002/(SICI)1521-3773(19990115)38:1/2%3C171::AID-ANIE171%3E3.0.CO;2-U
10.1039/b104276a
10.1103/PhysRevLett.78.4645
10.1021/ja974241r
10.1021/ic049457q
10.1039/b111094m
10.1016/0020-1693(95)04942-8
10.1246/bcsj.62.3812
10.1016/S0020-1693(99)00089-4
- The Van Vleck equation is: where Ei(0) is the energy of the i state in zero field and N the number of trimers. Then an analytical expression of the magnetic susceptibility can be proposed:
-
Using the mean-field approximation to treat the intrachain intertrimer interactions, the following definition of the susceptibility has been used: For example, see: (a) Myers, B. E.; Berger, L.; Friedberg, S. J. Appl. Phys. 1969, 40, 1149. (b) O'Connor, C. J. Prog. Inorg. Chem. 1982, 29, 203.10.1063/1.1657571
(
10.1063/1.1657571
) 10.1063/1.1750906
- (b) Boettcher, C. J. F. Theory of Electric Polarisation; Elsevier: Amsterdam, 1952.
10.1021/ic990613g
10.1088/0022-3719/8/22/024
10.1103/PhysRevE.52.4527
10.1103/PhysRevE.53.5852
Dates
Type | When |
---|---|
Created | 20 years, 6 months ago (March 2, 2005, 12:37 a.m.) |
Deposited | 1 year, 1 month ago (July 18, 2024, 1:49 p.m.) |
Indexed | 1 month, 1 week ago (July 25, 2025, 6:25 a.m.) |
Issued | 20 years, 6 months ago (Feb. 10, 2005) |
Published | 20 years, 6 months ago (Feb. 10, 2005) |
Published Online | 20 years, 6 months ago (Feb. 10, 2005) |
Published Print | 20 years, 5 months ago (March 9, 2005) |
@article{Ferbinteanu_2005, title={Single-Chain Magnet (NEt4)[Mn2(5-MeOsalen)2Fe(CN)6] Made of MnIII−FeIII−MnIII Trinuclear Single-Molecule Magnet with an ST = 9/2 Spin Ground State}, volume={127}, ISSN={1520-5126}, url={http://dx.doi.org/10.1021/ja0468123}, DOI={10.1021/ja0468123}, number={9}, journal={Journal of the American Chemical Society}, publisher={American Chemical Society (ACS)}, author={Ferbinteanu, Marilena and Miyasaka, Hitoshi and Wernsdorfer, Wolfgang and Nakata, Kazuya and Sugiura, Ken-ichi and Yamashita, Masahiro and Coulon, Claude and Clérac, Rodolphe}, year={2005}, month=feb, pages={3090–3099} }