Crossref journal-article
American Chemical Society (ACS)
Journal of Chemical Theory and Computation (316)
Bibliography

Unke, O. T., & Meuwly, M. (2019). PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges. Journal of Chemical Theory and Computation, 15(6), 3678–3693.

Authors 2
  1. Oliver T. Unke (first)
  2. Markus Meuwly (additional)
References 113 Referenced 754
  1. 10.1098/rspa.1929.0094
  2. 10.1002/(SICI)1521-3773(19990712)38:13/14<1894::AID-ANIE1894>3.0.CO;2-H
  3. 10.1147/rd.441.0206
  4. 10.1103/PhysRevLett.108.058301
  5. 10.1088/1367-2630/15/9/095003
  6. 10.1021/ct400195d
  7. 10.1021/acs.jpclett.5b00831
  8. 10.1007/BF02478259
  9. 10.1016/0893-6080(88)90020-2
  10. 10.1142/S0218339094000179
  11. 10.1093/oso/9780198538493.001.0001 / Neural Networks for Pattern Recognition by Bishop C. M. (1995)
  12. Clark, J. W.Scientific Applications of Neural Nets; Springer: 1999; pp 1–96. (10.1007/BFb0104276)
  13. 10.1017/CBO9780511812651
  14. {'key': 'ref14/cit14', 'volume-title': 'Neural Networks and Learning Machines', 'volume': '3', 'author': 'Haykin S. S.', 'year': '2009'} / Neural Networks and Learning Machines by Haykin S. S. (2009)
  15. 10.1007/BF02551274
  16. 10.1016/0893-6080(91)90009-T
  17. 10.1063/1.2336223
  18. 10.1063/1.2746846
  19. 10.1063/1.3124802
  20. 10.1103/PhysRevLett.98.146401
  21. 10.1063/1.3553717
  22. 10.1016/j.cpc.2016.05.010
  23. 10.1103/PhysRevB.96.014112
  24. 10.1063/1.5017898
  25. 10.1039/C6SC05720A
  26. 10.1039/C7SC04934J
  27. 10.1103/PhysRevLett.120.143001
  28. Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message Passing for Quantum Chemistry.ICML'17 Proceedings of the 34th International Conference on Machine Learning; 2017; pp 1263–1272.
  29. 10.1038/ncomms13890
  30. {'key': 'ref30/cit30', 'first-page': '991', 'author': 'Schütt K.', 'year': '2017', 'journal-title': 'Advances in Neural Information Processing Systems'} / Advances in Neural Information Processing Systems by Schütt K. (2017)
  31. 10.1063/1.5011181
  32. Schütt, K. T.; Gastegger, M.; Tkatchenko, A.; Müller, K.R. Quantum-chemical insights from interpretable atomistic neural networks. 2018. arXiv preprint arXiv:1806.10349. https://arxiv.org/abs/1806.10349 (accessed May 6, 2019).
  33. {'key': 'ref33/cit33', 'first-page': '2204', 'author': 'Mnih V.', 'year': '2014', 'journal-title': 'Advances in Neural Information Processing Systems'} / Advances in Neural Information Processing Systems by Mnih V. (2014)
  34. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks.European Conference on Computer Vision; 2016; pp 630–645. (10.1007/978-3-319-46493-0_38)
  35. 10.1038/sdata.2014.22
  36. 10.1126/sciadv.1603015
  37. 10.1103/PhysRevB.83.153101
  38. 10.1103/PhysRevLett.93.175503
  39. 10.1103/PhysRevLett.104.136403
  40. Huang, B.; von Lilienfeld, O. A. The “DNA” of chemistry: Scalable quantum machine learning with “amons. 2017. arXiv preprint arXiv:1707.04146. https://arxiv.org/abs/1707.04146 (accessed May 6, 2019).
  41. 10.1023/A:1018054314350
  42. 10.1109/72.392253
  43. 10.1038/35016072
  44. Eldan, R.; Shamir, O. The Power of Depth for Feedforward Neural Networks.Conference on Learning Theory; 2016; pp 907–940.
  45. Abadi, M.TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Software available from http://tensorflow.org/ (accessed May 6, 2019).
  46. {'key': 'ref46/cit46', 'first-page': '3111', 'author': 'Mikolov T.', 'year': '2013', 'journal-title': 'Advances in Neural Information Processing Systems'} / Advances in Neural Information Processing Systems by Mikolov T. (2013)
  47. Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks.Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics; 2010; pp 249–256.
  48. 10.1109/CVPR.2016.90
  49. 10.3115/v1/D14-1179
  50. {'volume-title': 'Texturing & Modeling: A Procedural Approach', 'year': '2003', 'author': 'Ebert D. S.', 'key': 'ref50/cit50'} / Texturing & Modeling: A Procedural Approach by Ebert D. S. (2003)
  51. 10.1007/BF01645613
  52. 10.1063/1.3382344
  53. 10.1021/jp401225b
  54. 10.1063/1.4986489
  55. 10.1002/jcc.23308
  56. 10.1021/acs.jcim.7b00663
  57. 10.1063/1.464397
  58. 10.1002/jcc.540150702
  59. {'key': 'ref59/cit59', 'first-page': '640', 'author': 'Thrun S.', 'year': '1996', 'journal-title': 'Advances in Neural Information Processing Systems'} / Advances in Neural Information Processing Systems by Thrun S. (1996)
  60. 10.1023/A:1007379606734
  61. 10.1613/jair.731
  62. 10.1039/C7SC02267K
  63. 10.1021/acs.jctc.8b00524
  64. {'key': 'ref64/cit64', 'first-page': '1', 'volume': '18', 'author': 'Baydin A. G.', 'year': '2018', 'journal-title': 'J. Mach. Learn. Res.'} / J. Mach. Learn. Res. by Baydin A. G. (2018)
  65. Reddi, S. J.; Kale, S.; Kumar, S. On the convergence of ADAM and beyond.International Conference on Learning Representations; 2018.
  66. 10.1007/3-540-49430-8_3
  67. 10.1007/BF00549096
  68. 10.1021/ct0501093
  69. 10.1021/ct0502209
  70. 10.1021/ct800503d
  71. 10.1139/v76-234
  72. 10.1021/ja00087a061
  73. 10.1021/ja960565o
  74. 10.1021/jp971452+
  75. 10.1021/ja021003+
  76. 10.1021/ja00102a034
  77. 10.1021/ja00148a015
  78. 10.1021/ja953665n
  79. 10.1021/jp013690h
  80. 10.1021/jp101329f
  81. 10.1038/nchem.2400
  82. 10.1021/jp1070852
  83. 10.1002/jcc.21759
  84. 10.1039/b508541a
  85. 10.1088/1361-648X/aa680e
  86. 10.1007/s00894-012-1667-x
  87. Stewart, J. J. P.MOPAC2016; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016. http://openmopac.net/ (accessed May 6, 2019).
  88. 10.1002/wcms.81
  89. 10.1002/wcms.1327
  90. 10.1039/C7CP04913G
  91. 10.1103/PhysRevLett.80.890
  92. 10.1063/1.5001028
  93. 10.1088/0953-8984/26/18/183001
  94. 10.1002/qua.24890
  95. 10.1021/ci300415d
  96. 10.1021/acs.jctc.7b00577
  97. 10.1103/PhysRevLett.77.3865
  98. 10.1103/PhysRevLett.102.073005
  99. 10.1038/s41467-018-06169-2
  100. 10.1021/acs.jcim.7b00090
  101. 10.1021/ct5002076
  102. 10.1063/1.1590311
  103. {'volume-title': 'Practical Methods of Optimization', 'year': '2013', 'author': 'Fletcher R.', 'key': 'ref103/cit103'} / Practical Methods of Optimization by Fletcher R. (2013)
  104. {'key': 'ref104/cit104', 'first-page': '530', 'volume': '146', 'author': 'Langevin P.', 'year': '1908', 'journal-title': 'C. R. Acad. Sci. Paris.'} / C. R. Acad. Sci. Paris. by Langevin P. (1908)
  105. 10.1002/jcc.20082
  106. 10.1002/jcc.540040211
  107. 10.1021/ct300400x
  108. 10.1016/0009-2614(81)85452-8
  109. 10.1002/jcc.22996
  110. 10.1063/1.1598191
  111. 10.1038/273443a0
  112. 10.5281/zenodo.2605341
  113. 10.5281/zenodo.2605372
Dates
Type When
Created 6 years, 3 months ago (May 1, 2019, 5:47 p.m.)
Deposited 1 year, 1 month ago (July 17, 2024, 10:35 a.m.)
Indexed 2 days, 1 hour ago (Aug. 19, 2025, 6:42 a.m.)
Issued 6 years, 3 months ago (May 1, 2019)
Published 6 years, 3 months ago (May 1, 2019)
Published Online 6 years, 3 months ago (May 1, 2019)
Published Print 6 years, 2 months ago (June 11, 2019)
Funders 2
  1. Schweizerischer Nationalfonds zur F?rderung der Wissenschaftlichen Forschung 10.13039/501100001711 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

    Region: Europe

    pri (Trusts, charities, foundations (both public and private))

    Labels10
    1. Schweizerischer Nationalfonds
    2. Swiss National Science Foundation
    3. Fonds National Suisse de la Recherche Scientifique
    4. Fondo Nazionale Svizzero per la Ricerca Scientifica
    5. Fonds National Suisse
    6. Fondo Nazionale Svizzero
    7. Schweizerische Nationalfonds
    8. SNF
    9. SNSF
    10. FNS
    Awards2
    1. NCCR MUST
    2. 200021-7117810
  2. Universit?t Basel 10.13039/100008375 Universität Basel

    Region: Europe

    gov (Universities (academic only))

    Labels5
    1. UniBas
    2. University of Basel
    3. Universitas Basiliensis
    4. Die Universität Basel
    5. UB

@article{Unke_2019, title={PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges}, volume={15}, ISSN={1549-9626}, url={http://dx.doi.org/10.1021/acs.jctc.9b00181}, DOI={10.1021/acs.jctc.9b00181}, number={6}, journal={Journal of Chemical Theory and Computation}, publisher={American Chemical Society (ACS)}, author={Unke, Oliver T. and Meuwly, Markus}, year={2019}, month=may, pages={3678–3693} }