Crossref
journal-article
American Chemical Society (ACS)
Journal of Chemical Theory and Computation (316)
Authors
2
- Oliver T. Unke (first)
- Markus Meuwly (additional)
References
113
Referenced
754
10.1098/rspa.1929.0094
10.1002/(SICI)1521-3773(19990712)38:13/14<1894::AID-ANIE1894>3.0.CO;2-H
10.1147/rd.441.0206
10.1103/PhysRevLett.108.058301
10.1088/1367-2630/15/9/095003
10.1021/ct400195d
10.1021/acs.jpclett.5b00831
10.1007/BF02478259
10.1016/0893-6080(88)90020-2
10.1142/S0218339094000179
10.1093/oso/9780198538493.001.0001
/ Neural Networks for Pattern Recognition by Bishop C. M. (1995)-
Clark, J. W.Scientific Applications of Neural Nets; Springer: 1999; pp 1–96.
(
10.1007/BFb0104276
) 10.1017/CBO9780511812651
{'key': 'ref14/cit14', 'volume-title': 'Neural Networks and Learning Machines', 'volume': '3', 'author': 'Haykin S. S.', 'year': '2009'}
/ Neural Networks and Learning Machines by Haykin S. S. (2009)10.1007/BF02551274
10.1016/0893-6080(91)90009-T
10.1063/1.2336223
10.1063/1.2746846
10.1063/1.3124802
10.1103/PhysRevLett.98.146401
10.1063/1.3553717
10.1016/j.cpc.2016.05.010
10.1103/PhysRevB.96.014112
10.1063/1.5017898
10.1039/C6SC05720A
10.1039/C7SC04934J
10.1103/PhysRevLett.120.143001
- Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message Passing for Quantum Chemistry.ICML'17 Proceedings of the 34th International Conference on Machine Learning; 2017; pp 1263–1272.
10.1038/ncomms13890
{'key': 'ref30/cit30', 'first-page': '991', 'author': 'Schütt K.', 'year': '2017', 'journal-title': 'Advances in Neural Information Processing Systems'}
/ Advances in Neural Information Processing Systems by Schütt K. (2017)10.1063/1.5011181
- Schütt, K. T.; Gastegger, M.; Tkatchenko, A.; Müller, K.R. Quantum-chemical insights from interpretable atomistic neural networks. 2018. arXiv preprint arXiv:1806.10349. https://arxiv.org/abs/1806.10349 (accessed May 6, 2019).
{'key': 'ref33/cit33', 'first-page': '2204', 'author': 'Mnih V.', 'year': '2014', 'journal-title': 'Advances in Neural Information Processing Systems'}
/ Advances in Neural Information Processing Systems by Mnih V. (2014)-
He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks.European Conference on Computer Vision; 2016; pp 630–645.
(
10.1007/978-3-319-46493-0_38
) 10.1038/sdata.2014.22
10.1126/sciadv.1603015
10.1103/PhysRevB.83.153101
10.1103/PhysRevLett.93.175503
10.1103/PhysRevLett.104.136403
- Huang, B.; von Lilienfeld, O. A. The “DNA” of chemistry: Scalable quantum machine learning with “amons. 2017. arXiv preprint arXiv:1707.04146. https://arxiv.org/abs/1707.04146 (accessed May 6, 2019).
10.1023/A:1018054314350
10.1109/72.392253
10.1038/35016072
- Eldan, R.; Shamir, O. The Power of Depth for Feedforward Neural Networks.Conference on Learning Theory; 2016; pp 907–940.
- Abadi, M.TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Software available from http://tensorflow.org/ (accessed May 6, 2019).
{'key': 'ref46/cit46', 'first-page': '3111', 'author': 'Mikolov T.', 'year': '2013', 'journal-title': 'Advances in Neural Information Processing Systems'}
/ Advances in Neural Information Processing Systems by Mikolov T. (2013)- Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks.Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics; 2010; pp 249–256.
10.1109/CVPR.2016.90
10.3115/v1/D14-1179
{'volume-title': 'Texturing & Modeling: A Procedural Approach', 'year': '2003', 'author': 'Ebert D. S.', 'key': 'ref50/cit50'}
/ Texturing & Modeling: A Procedural Approach by Ebert D. S. (2003)10.1007/BF01645613
10.1063/1.3382344
10.1021/jp401225b
10.1063/1.4986489
10.1002/jcc.23308
10.1021/acs.jcim.7b00663
10.1063/1.464397
10.1002/jcc.540150702
{'key': 'ref59/cit59', 'first-page': '640', 'author': 'Thrun S.', 'year': '1996', 'journal-title': 'Advances in Neural Information Processing Systems'}
/ Advances in Neural Information Processing Systems by Thrun S. (1996)10.1023/A:1007379606734
10.1613/jair.731
10.1039/C7SC02267K
10.1021/acs.jctc.8b00524
{'key': 'ref64/cit64', 'first-page': '1', 'volume': '18', 'author': 'Baydin A. G.', 'year': '2018', 'journal-title': 'J. Mach. Learn. Res.'}
/ J. Mach. Learn. Res. by Baydin A. G. (2018)- Reddi, S. J.; Kale, S.; Kumar, S. On the convergence of ADAM and beyond.International Conference on Learning Representations; 2018.
10.1007/3-540-49430-8_3
10.1007/BF00549096
10.1021/ct0501093
10.1021/ct0502209
10.1021/ct800503d
10.1139/v76-234
10.1021/ja00087a061
10.1021/ja960565o
10.1021/jp971452+
10.1021/ja021003+
10.1021/ja00102a034
10.1021/ja00148a015
10.1021/ja953665n
10.1021/jp013690h
10.1021/jp101329f
10.1038/nchem.2400
10.1021/jp1070852
10.1002/jcc.21759
10.1039/b508541a
10.1088/1361-648X/aa680e
10.1007/s00894-012-1667-x
- Stewart, J. J. P.MOPAC2016; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016. http://openmopac.net/ (accessed May 6, 2019).
10.1002/wcms.81
10.1002/wcms.1327
10.1039/C7CP04913G
10.1103/PhysRevLett.80.890
10.1063/1.5001028
10.1088/0953-8984/26/18/183001
10.1002/qua.24890
10.1021/ci300415d
10.1021/acs.jctc.7b00577
10.1103/PhysRevLett.77.3865
10.1103/PhysRevLett.102.073005
10.1038/s41467-018-06169-2
10.1021/acs.jcim.7b00090
10.1021/ct5002076
10.1063/1.1590311
{'volume-title': 'Practical Methods of Optimization', 'year': '2013', 'author': 'Fletcher R.', 'key': 'ref103/cit103'}
/ Practical Methods of Optimization by Fletcher R. (2013){'key': 'ref104/cit104', 'first-page': '530', 'volume': '146', 'author': 'Langevin P.', 'year': '1908', 'journal-title': 'C. R. Acad. Sci. Paris.'}
/ C. R. Acad. Sci. Paris. by Langevin P. (1908)10.1002/jcc.20082
10.1002/jcc.540040211
10.1021/ct300400x
10.1016/0009-2614(81)85452-8
10.1002/jcc.22996
10.1063/1.1598191
10.1038/273443a0
10.5281/zenodo.2605341
10.5281/zenodo.2605372
Dates
Type | When |
---|---|
Created | 6 years, 3 months ago (May 1, 2019, 5:47 p.m.) |
Deposited | 1 year, 1 month ago (July 17, 2024, 10:35 a.m.) |
Indexed | 2 days, 1 hour ago (Aug. 19, 2025, 6:42 a.m.) |
Issued | 6 years, 3 months ago (May 1, 2019) |
Published | 6 years, 3 months ago (May 1, 2019) |
Published Online | 6 years, 3 months ago (May 1, 2019) |
Published Print | 6 years, 2 months ago (June 11, 2019) |
Funders
2
Schweizerischer Nationalfonds zur F?rderung der Wissenschaftlichen Forschung
10.13039/501100001711
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen ForschungRegion: Europe
pri (Trusts, charities, foundations (both public and private))
Labels
10
- Schweizerischer Nationalfonds
- Swiss National Science Foundation
- Fonds National Suisse de la Recherche Scientifique
- Fondo Nazionale Svizzero per la Ricerca Scientifica
- Fonds National Suisse
- Fondo Nazionale Svizzero
- Schweizerische Nationalfonds
- SNF
- SNSF
- FNS
Awards
2
- NCCR MUST
- 200021-7117810
Universit?t Basel
10.13039/100008375
Universität BaselRegion: Europe
gov (Universities (academic only))
Labels
5
- UniBas
- University of Basel
- Universitas Basiliensis
- Die Universität Basel
- UB
@article{Unke_2019, title={PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges}, volume={15}, ISSN={1549-9626}, url={http://dx.doi.org/10.1021/acs.jctc.9b00181}, DOI={10.1021/acs.jctc.9b00181}, number={6}, journal={Journal of Chemical Theory and Computation}, publisher={American Chemical Society (ACS)}, author={Unke, Oliver T. and Meuwly, Markus}, year={2019}, month=may, pages={3678–3693} }