Bibliography
Faber, F. A., Hutchison, L., Huang, B., Gilmer, J., Schoenholz, S. S., Dahl, G. E., Vinyals, O., Kearnes, S., Riley, P. F., & von Lilienfeld, O. A. (2017). Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error. Journal of Chemical Theory and Computation, 13(11), 5255â5264.
Authors
10
- Felix A. Faber (first)
- Luke Hutchison (additional)
- Bing Huang (additional)
- Justin Gilmer (additional)
- Samuel S. Schoenholz (additional)
- George E. Dahl (additional)
- Oriol Vinyals (additional)
- Steven Kearnes (additional)
- Patrick F. Riley (additional)
- O. Anatole von Lilienfeld (additional)
References
64
Referenced
496
10.1103/PhysRev.136.B864
10.1103/PhysRev.140.A1133
10.1063/1.4704546
10.1002/3527600043
10.1021/cr200107z
10.1021/ja5111392
10.1126/science.aah5975
10.1021/acs.jctc.5b00099
10.1038/sdata.2014.22
10.1021/ci300415d
10.1063/1.4964627
10.1021/acs.jpclett.5b00831
10.2533/chimia.2015.182
10.1103/PhysRevLett.108.058301
-
Barker, J.; Bulin, J.; Hamaekers, J.; Mathias, S.Localized Coulomb Descriptors for the Gaussian Approximation Potential. arXiv preprint arXiv:1611.05126, 2016.
(
10.1007/978-3-319-62458-7_2
) 10.1002/qua.24912
10.1103/PhysRevB.92.014106
10.1103/PhysRevB.87.184115
10.1039/C6CP00415F
- Collins, C. R.; Gordon, G. J.; von Lilienfeld, O. A.; Yaron, D. J.Constant Size Molecular Descriptors For Use With Machine Learning. arXiv preprint arXiv:1701.06649, 2016.
10.1039/C6SC05720A
10.1038/ncomms13890
10.1021/acs.jctc.5b00141
10.1007/s002149900083
10.1021/acs.jctc.5b01047
10.1021/ct400195d
10.1007/s10822-016-9938-8
{'volume-title': 'Proceeding of ICLR’16', 'year': '2016', 'author': 'Li Y.', 'key': 'ref28/cit28'}
/ Proceeding of ICLR’16 by Li Y. (2016)10.1063/1.473182
10.1021/jp502475e
10.1021/ja9826892
10.1021/jp048233q
10.1093/biomet/27.3-4.310
10.1021/jp066312r
- Huo, H.; Rupp, M.Unified Representation for Machine Learning of Molecules and Crystals. arXiv preprint arXiv:1704.06439, 2017.
-
Bartok, A. P.; De, S.; Poelking, C.; Bernstein, N.; Kermode, J.; Csanyi, G.; Ceriotti, M.Machine Learning Unifies the Modelling of Materials and Molecules. arXiv preprint arXiv:1706.00179, 2017.
(
10.1126/sciadv.1701816
) 10.1021/ja00051a040
10.1021/ci100050t
10.1038/nature11691
10.1038/nature11159
10.1038/nchem.1549
10.1002/9783527613106
10.1021/ci020345w
10.1016/S1093-3263(01)00144-9
10.1186/1758-2946-3-33
- Landrum, G.RDKit: Open-source cheminformatics software; 2014; Vol.3, p2012.http://www.rdkit.org(accessed Sept 26, 2017).
- Faber, F. A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.; Vinyals, O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A.Fast machine learning models of electronic and energetic properties consistently reach approximation errors better than DFT accuracy. arXiv preprint arXiv:1702.05532, 2017.
10.1109/72.914517
{'volume-title': 'Learning with kernels: support vector machines, regularization, optimization, and beyond', 'year': '2002', 'author': 'Schölkopf B.', 'key': 'ref49/cit49'}
/ Learning with kernels: support vector machines, regularization, optimization, and beyond by Schölkopf B. (2002)10.1007/978-3-642-41136-6_11
10.1007/978-0-387-84858-7
10.1080/00401706.2000.10485983
{'key': 'ref53/cit53', 'first-page': '2825', 'volume': '12', 'author': 'Pedregosa F.', 'year': '2011', 'journal-title': 'J. Mach. Learn. Res.'}
/ J. Mach. Learn. Res. by Pedregosa F. (2011)10.1007/978-1-4612-0745-0
10.1111/j.1467-9868.2005.00503.x
10.1023/A:1010933404324
{'key': 'ref57/cit57', 'first-page': '2215', 'volume-title': 'Advances in Neural Information Processing Systems', 'author': 'Duvenaud D. K.', 'year': '2015'}
/ Advances in Neural Information Processing Systems by Duvenaud D. K. (2015){'key': 'ref58/cit58', 'first-page': '4053', 'volume': '15', 'author': 'Desautels T.', 'year': '2014', 'journal-title': 'J. Mach. Learn. Res.'}
/ J. Mach. Learn. Res. by Desautels T. (2014)- Google HyperTune.https://cloud.google.com/ml/(accessed 2016) .
10.1021/jp070851u
10.1162/neco.1996.8.5.1085
- Huang, B.; von Lilienfeld, O. A.The “DNA” of chemistry: Scalable quantum machine learning with “amons. arXiv preprint arXiv:1707.04146, 2017.
- Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E.Neural Message Passing for Quantum Chemistry. Proceedings of the 34nd International Conference on Machine Learning, ICML 2017, 2017.
10.1038/432823a
Dates
Type | When |
---|---|
Created | 7 years, 11 months ago (Sept. 19, 2017, 2:07 p.m.) |
Deposited | 2 years, 3 months ago (April 25, 2023, 11:51 p.m.) |
Indexed | 1 day, 8 hours ago (Aug. 23, 2025, 9:37 p.m.) |
Issued | 7 years, 10 months ago (Oct. 10, 2017) |
Published | 7 years, 10 months ago (Oct. 10, 2017) |
Published Online | 7 years, 10 months ago (Oct. 10, 2017) |
Published Print | 7 years, 9 months ago (Nov. 14, 2017) |
Funders
4
Schweizerischer Nationalfonds zur F?rderung der Wissenschaftlichen Forschung
10.13039/501100001711
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen ForschungRegion: Europe
pri (Trusts, charities, foundations (both public and private))
Labels
10
- Schweizerischer Nationalfonds
- Swiss National Science Foundation
- Fonds National Suisse de la Recherche Scientifique
- Fondo Nazionale Svizzero per la Ricerca Scientifica
- Fonds National Suisse
- Fondo Nazionale Svizzero
- Schweizerische Nationalfonds
- SNF
- SNSF
- FNS
Awards
2
- 310030_160067
- PP00P2_138932
Air Force Office of Scientific Research
10.13039/100000181
Region: Americas
gov (National government)
Labels
4
- AF Office of Scientific Research
- US Air Force Office of Scientific Research
- United States Air Force Office of Scientific Research
- AFOSR
Awards
1
- FA9550-15-1-0026
Google
10.13039/100006785
Region: Americas
gov (For-profit companies (industry))
Labels
2
- Google LLC
- Google Inc.
Forschungsfonds, Universit?t Basel
@article{Faber_2017, title={Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error}, volume={13}, ISSN={1549-9626}, url={http://dx.doi.org/10.1021/acs.jctc.7b00577}, DOI={10.1021/acs.jctc.7b00577}, number={11}, journal={Journal of Chemical Theory and Computation}, publisher={American Chemical Society (ACS)}, author={Faber, Felix A. and Hutchison, Luke and Huang, Bing and Gilmer, Justin and Schoenholz, Samuel S. and Dahl, George E. and Vinyals, Oriol and Kearnes, Steven and Riley, Patrick F. and von Lilienfeld, O. Anatole}, year={2017}, month=oct, pages={5255–5264} }