Crossref journal-article
American Chemical Society (ACS)
Journal of Chemical Theory and Computation (316)
Bibliography

Faber, F. A., Hutchison, L., Huang, B., Gilmer, J., Schoenholz, S. S., Dahl, G. E., Vinyals, O., Kearnes, S., Riley, P. F., & von Lilienfeld, O. A. (2017). Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error. Journal of Chemical Theory and Computation, 13(11), 5255–5264.

Authors 10
  1. Felix A. Faber (first)
  2. Luke Hutchison (additional)
  3. Bing Huang (additional)
  4. Justin Gilmer (additional)
  5. Samuel S. Schoenholz (additional)
  6. George E. Dahl (additional)
  7. Oriol Vinyals (additional)
  8. Steven Kearnes (additional)
  9. Patrick F. Riley (additional)
  10. O. Anatole von Lilienfeld (additional)
References 64 Referenced 496
  1. 10.1103/PhysRev.136.B864
  2. 10.1103/PhysRev.140.A1133
  3. 10.1063/1.4704546
  4. 10.1002/3527600043
  5. 10.1021/cr200107z
  6. 10.1021/ja5111392
  7. 10.1126/science.aah5975
  8. 10.1021/acs.jctc.5b00099
  9. 10.1038/sdata.2014.22
  10. 10.1021/ci300415d
  11. 10.1063/1.4964627
  12. 10.1021/acs.jpclett.5b00831
  13. 10.2533/chimia.2015.182
  14. 10.1103/PhysRevLett.108.058301
  15. Barker, J.; Bulin, J.; Hamaekers, J.; Mathias, S.Localized Coulomb Descriptors for the Gaussian Approximation Potential. arXiv preprint arXiv:1611.05126, 2016. (10.1007/978-3-319-62458-7_2)
  16. 10.1002/qua.24912
  17. 10.1103/PhysRevB.92.014106
  18. 10.1103/PhysRevB.87.184115
  19. 10.1039/C6CP00415F
  20. Collins, C. R.; Gordon, G. J.; von Lilienfeld, O. A.; Yaron, D. J.Constant Size Molecular Descriptors For Use With Machine Learning. arXiv preprint arXiv:1701.06649, 2016.
  21. 10.1039/C6SC05720A
  22. 10.1038/ncomms13890
  23. 10.1021/acs.jctc.5b00141
  24. 10.1007/s002149900083
  25. 10.1021/acs.jctc.5b01047
  26. 10.1021/ct400195d
  27. 10.1007/s10822-016-9938-8
  28. {'volume-title': 'Proceeding of ICLR’16', 'year': '2016', 'author': 'Li Y.', 'key': 'ref28/cit28'} / Proceeding of ICLR’16 by Li Y. (2016)
  29. 10.1063/1.473182
  30. 10.1021/jp502475e
  31. 10.1021/ja9826892
  32. 10.1021/jp048233q
  33. 10.1093/biomet/27.3-4.310
  34. 10.1021/jp066312r
  35. Huo, H.; Rupp, M.Unified Representation for Machine Learning of Molecules and Crystals. arXiv preprint arXiv:1704.06439, 2017.
  36. Bartok, A. P.; De, S.; Poelking, C.; Bernstein, N.; Kermode, J.; Csanyi, G.; Ceriotti, M.Machine Learning Unifies the Modelling of Materials and Molecules. arXiv preprint arXiv:1706.00179, 2017. (10.1126/sciadv.1701816)
  37. 10.1021/ja00051a040
  38. 10.1021/ci100050t
  39. 10.1038/nature11691
  40. 10.1038/nature11159
  41. 10.1038/nchem.1549
  42. 10.1002/9783527613106
  43. 10.1021/ci020345w
  44. 10.1016/S1093-3263(01)00144-9
  45. 10.1186/1758-2946-3-33
  46. Landrum, G.RDKit: Open-source cheminformatics software; 2014; Vol.3, p2012.http://www.rdkit.org(accessed Sept 26, 2017).
  47. Faber, F. A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.; Vinyals, O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A.Fast machine learning models of electronic and energetic properties consistently reach approximation errors better than DFT accuracy. arXiv preprint arXiv:1702.05532, 2017.
  48. 10.1109/72.914517
  49. {'volume-title': 'Learning with kernels: support vector machines, regularization, optimization, and beyond', 'year': '2002', 'author': 'Schölkopf B.', 'key': 'ref49/cit49'} / Learning with kernels: support vector machines, regularization, optimization, and beyond by Schölkopf B. (2002)
  50. 10.1007/978-3-642-41136-6_11
  51. 10.1007/978-0-387-84858-7
  52. 10.1080/00401706.2000.10485983
  53. {'key': 'ref53/cit53', 'first-page': '2825', 'volume': '12', 'author': 'Pedregosa F.', 'year': '2011', 'journal-title': 'J. Mach. Learn. Res.'} / J. Mach. Learn. Res. by Pedregosa F. (2011)
  54. 10.1007/978-1-4612-0745-0
  55. 10.1111/j.1467-9868.2005.00503.x
  56. 10.1023/A:1010933404324
  57. {'key': 'ref57/cit57', 'first-page': '2215', 'volume-title': 'Advances in Neural Information Processing Systems', 'author': 'Duvenaud D. K.', 'year': '2015'} / Advances in Neural Information Processing Systems by Duvenaud D. K. (2015)
  58. {'key': 'ref58/cit58', 'first-page': '4053', 'volume': '15', 'author': 'Desautels T.', 'year': '2014', 'journal-title': 'J. Mach. Learn. Res.'} / J. Mach. Learn. Res. by Desautels T. (2014)
  59. Google HyperTune.https://cloud.google.com/ml/(accessed 2016) .
  60. 10.1021/jp070851u
  61. 10.1162/neco.1996.8.5.1085
  62. Huang, B.; von Lilienfeld, O. A.The “DNA” of chemistry: Scalable quantum machine learning with “amons. arXiv preprint arXiv:1707.04146, 2017.
  63. Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E.Neural Message Passing for Quantum Chemistry. Proceedings of the 34nd International Conference on Machine Learning, ICML 2017, 2017.
  64. 10.1038/432823a
Dates
Type When
Created 7 years, 11 months ago (Sept. 19, 2017, 2:07 p.m.)
Deposited 2 years, 3 months ago (April 25, 2023, 11:51 p.m.)
Indexed 1 day, 8 hours ago (Aug. 23, 2025, 9:37 p.m.)
Issued 7 years, 10 months ago (Oct. 10, 2017)
Published 7 years, 10 months ago (Oct. 10, 2017)
Published Online 7 years, 10 months ago (Oct. 10, 2017)
Published Print 7 years, 9 months ago (Nov. 14, 2017)
Funders 4
  1. Schweizerischer Nationalfonds zur F?rderung der Wissenschaftlichen Forschung 10.13039/501100001711 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

    Region: Europe

    pri (Trusts, charities, foundations (both public and private))

    Labels10
    1. Schweizerischer Nationalfonds
    2. Swiss National Science Foundation
    3. Fonds National Suisse de la Recherche Scientifique
    4. Fondo Nazionale Svizzero per la Ricerca Scientifica
    5. Fonds National Suisse
    6. Fondo Nazionale Svizzero
    7. Schweizerische Nationalfonds
    8. SNF
    9. SNSF
    10. FNS
    Awards2
    1. 310030_160067
    2. PP00P2_138932
  2. Air Force Office of Scientific Research 10.13039/100000181

    Region: Americas

    gov (National government)

    Labels4
    1. AF Office of Scientific Research
    2. US Air Force Office of Scientific Research
    3. United States Air Force Office of Scientific Research
    4. AFOSR
    Awards1
    1. FA9550-15-1-0026
  3. Google 10.13039/100006785

    Region: Americas

    gov (For-profit companies (industry))

    Labels2
    1. Google LLC
    2. Google Inc.
  4. Forschungsfonds, Universit?t Basel

@article{Faber_2017, title={Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error}, volume={13}, ISSN={1549-9626}, url={http://dx.doi.org/10.1021/acs.jctc.7b00577}, DOI={10.1021/acs.jctc.7b00577}, number={11}, journal={Journal of Chemical Theory and Computation}, publisher={American Chemical Society (ACS)}, author={Faber, Felix A. and Hutchison, Luke and Huang, Bing and Gilmer, Justin and Schoenholz, Samuel S. and Dahl, George E. and Vinyals, Oriol and Kearnes, Steven and Riley, Patrick F. and von Lilienfeld, O. Anatole}, year={2017}, month=oct, pages={5255–5264} }