Crossref
journal-article
American Chemical Society (ACS)
Journal of Chemical Theory and Computation (316)
References
101
Referenced
114
10.1103/PhysRev.136.B864
10.1103/PhysRev.140.A1133
10.1016/j.cpc.2014.12.021
10.1016/j.cpc.2014.08.023
10.1021/jz500216t
10.1103/PhysRevB.92.014104
10.1016/j.cplett.2009.03.064
10.1063/1.4870397
10.1007/BF00344251
10.1109/5.726791
-
Simard, P.; Steinkraus, D.; Platt, J. C.Best practices for convolutional neural networks applied to visual document analysis. Document Analysis and Recognition, 2003. Proceedings. Seventh International Conference on. 2003; pp958–963.
(
10.1109/ICDAR.2003.1227801
) 10.1016/S0893-6080(03)00115-1
10.1162/neco.2006.18.7.1527
-
Ciresan, D.; Meier, U.; Schmidhuber, J.Multi-column deep neural networks for image classification. Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. 2012; pp3642–3649.
(
10.1109/CVPR.2012.6248110
) 10.1103/PhysRevLett.108.253002
10.1039/b810407g
10.1063/1.4903450
10.1103/PhysRevLett.98.146401
10.1021/jp9105585
10.1038/nmat3078
10.1103/PhysRevB.89.235411
10.1002/qua.24954
10.1039/c1cp21668f
10.1021/acs.jpclett.5b00831
10.1021/j100132a040
10.1103/PhysRevA.77.012504
10.1088/0965-0393/20/1/015006
10.1021/ct400836s
10.1063/1.4869867
10.1016/j.jpowsour.2013.12.097
10.1103/PhysRevB.85.045126
10.1103/PhysRevA.34.4586
10.1103/PhysRevB.86.235109
10.1063/1.3685604
10.1103/PhysRevB.91.045124
10.1103/PhysRevA.50.5328
10.1016/j.cpc.2012.06.016
10.1103/PhysRevB.75.205122
10.1021/jp037716b
10.1103/PhysRevA.63.052508
10.1007/s10910-011-9860-1
10.1016/0375-9601(92)91058-Y
10.1103/PhysRevB.81.045206
10.1080/14786430903246353
10.1016/bs.aiq.2015.02.004
10.1103/PhysRevB.88.161108
10.1103/PhysRevB.86.115101
10.1103/PhysRevB.80.245120
10.1002/qua.22312
10.1103/PhysRevB.92.117101
10.1103/PhysRevB.92.117102
10.1063/1.1321308
- Wang, Y. A.; Carter, E. A.Theoretical methods in condensed phase chemistry;Springer: 2002; pp117–184.
10.1039/C5CP01211B
10.1103/PhysRevLett.106.186406
10.1007/s10820-006-9019-8
10.1103/PhysRevB.53.9509
10.1103/PhysRevB.57.4857
10.1103/PhysRevLett.111.066402
10.1103/PhysRevB.45.13196
10.1103/PhysRevB.58.13465
10.1103/PhysRevB.60.16350
10.1002/qua.24937
10.1002/qua.24939
10.1063/1.4834075
10.1063/1.1565316
10.1063/1.1872832
10.1021/jp1029745
10.1063/1.4870763
10.1103/PhysRevA.38.625
10.1103/PhysRevA.59.2670
10.1021/ct400129d
10.1063/1.3059783
10.1039/C2CP23142E
10.1002/qua.25040
-
Huang, P.S.; Avron, H.; Sainath, T.; Sindhwani, V.; Ramabhadran, B.Kernel methods match Deep Neural Networks on TIMIT. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. 2014; pp205–209.
(
10.1109/ICASSP.2014.6853587
) 10.1016/0893-6080(91)90009-T
{'key': 'ref78/cit78', 'first-page': '1', 'volume': '10', 'author': 'Larochelle H.', 'year': '2009', 'journal-title': 'J. Mach. Learn. Res.'}
/ J. Mach. Learn. Res. by Larochelle H. (2009)10.1113/jphysiol.1968.sp008455
10.1038/nature14539
{'key': 'ref81/cit81', 'first-page': '1097', 'author': 'Krizhevsky A.', 'year': '2012', 'journal-title': 'Advances in neural information processing systems'}
/ Advances in neural information processing systems by Krizhevsky A. (2012)10.1080/00268971003662896
10.1080/00268979909482950
10.1002/(SICI)1097-461X(1997)61:5<835::AID-QUA9>3.3.CO;2-#
- Kavzoglu, T.Determining optimum structure for artificial neural networks.Proceedings of the 25th Annual Technical Conference and Exhibition of the Remote Sensing Society; 1999; pp675–682.
10.1007/PL00011414
10.1038/323533a0
{'key': 'ref88/cit88', 'first-page': '83', 'volume': '27', 'author': 'Hastie T.', 'year': '2005', 'journal-title': 'Math. Intel.'}
/ Math. Intel. by Hastie T. (2005)10.1145/2623330.2623612
- Shiozaki, T.; Parker, S.; Reynolds, R.; Le, H.A.; Kim, I.; MacLeod, M.; Kelley, M.; Caldwell, M.; Bates, J.BAGEL, Brilliantly Advanced General Electronic-structure Library.
10.1016/j.cpc.2012.05.007
{'key': 'ref92/cit92', 'first-page': '48', 'volume': '15', 'author': 'Lebedev V. I.', 'year': '1975', 'journal-title': 'Zh. Vychisl. Mater. Mater. Fiz.'}
/ Zh. Vychisl. Mater. Mater. Fiz. by Lebedev V. I. (1975)10.1063/1.454033
10.1080/00268976.2014.952696
10.1063/1.464913
- Goodfellow, I. J.; Shlens, J.; Szegedy, C.arXiv:1412.6572. arXiv.org e-Print archive2014, http://arxiv.org/abs/1412.6572v3(accessed Jan 21, 2016).
-
Burger, H. C.; Schuler, C. J.; Harmeling, S.Image denoising: Can plain Neural Networks compete with BM3D? Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. 2012; pp2392–2399.
(
10.1109/CVPR.2012.6247952
) 10.4208/cicp.190111.090911a
-
Snyder, J. C.; Mika, S.; Burke, K.; Müller, K.R.Empirical Inference;Springer: 2013; pp245–259.
(
10.1007/978-3-642-41136-6_21
) 10.1103/PhysRevA.38.3098
10.1103/PhysRevB.37.785
Dates
Type | When |
---|---|
Created | 9 years, 7 months ago (Jan. 26, 2016, 5:40 p.m.) |
Deposited | 2 months, 4 weeks ago (June 1, 2025, 3:10 a.m.) |
Indexed | 3 days, 16 hours ago (Aug. 27, 2025, 12:10 p.m.) |
Issued | 9 years, 6 months ago (Feb. 8, 2016) |
Published | 9 years, 6 months ago (Feb. 8, 2016) |
Published Online | 9 years, 6 months ago (Feb. 8, 2016) |
Published Print | 9 years, 5 months ago (March 8, 2016) |
@article{Yao_2016, title={Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks}, volume={12}, ISSN={1549-9626}, url={http://dx.doi.org/10.1021/acs.jctc.5b01011}, DOI={10.1021/acs.jctc.5b01011}, number={3}, journal={Journal of Chemical Theory and Computation}, publisher={American Chemical Society (ACS)}, author={Yao, Kun and Parkhill, John}, year={2016}, month=feb, pages={1139–1147} }