Crossref journal-article
American Chemical Society (ACS)
Journal of Chemical Theory and Computation (316)
Bibliography

Yao, K., & Parkhill, J. (2016). Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks. Journal of Chemical Theory and Computation, 12(3), 1139–1147.

Authors 2
  1. Kun Yao (first)
  2. John Parkhill (additional)
References 101 Referenced 114
  1. 10.1103/PhysRev.136.B864
  2. 10.1103/PhysRev.140.A1133
  3. 10.1016/j.cpc.2014.12.021
  4. 10.1016/j.cpc.2014.08.023
  5. 10.1021/jz500216t
  6. 10.1103/PhysRevB.92.014104
  7. 10.1016/j.cplett.2009.03.064
  8. 10.1063/1.4870397
  9. 10.1007/BF00344251
  10. 10.1109/5.726791
  11. Simard, P.; Steinkraus, D.; Platt, J. C.Best practices for convolutional neural networks applied to visual document analysis. Document Analysis and Recognition, 2003. Proceedings. Seventh International Conference on. 2003; pp958–963. (10.1109/ICDAR.2003.1227801)
  12. 10.1016/S0893-6080(03)00115-1
  13. 10.1162/neco.2006.18.7.1527
  14. Ciresan, D.; Meier, U.; Schmidhuber, J.Multi-column deep neural networks for image classification. Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. 2012; pp3642–3649. (10.1109/CVPR.2012.6248110)
  15. 10.1103/PhysRevLett.108.253002
  16. 10.1039/b810407g
  17. 10.1063/1.4903450
  18. 10.1103/PhysRevLett.98.146401
  19. 10.1021/jp9105585
  20. 10.1038/nmat3078
  21. 10.1103/PhysRevB.89.235411
  22. 10.1002/qua.24954
  23. 10.1039/c1cp21668f
  24. 10.1021/acs.jpclett.5b00831
  25. 10.1021/j100132a040
  26. 10.1103/PhysRevA.77.012504
  27. 10.1088/0965-0393/20/1/015006
  28. 10.1021/ct400836s
  29. 10.1063/1.4869867
  30. 10.1016/j.jpowsour.2013.12.097
  31. 10.1103/PhysRevB.85.045126
  32. 10.1103/PhysRevA.34.4586
  33. 10.1103/PhysRevB.86.235109
  34. 10.1063/1.3685604
  35. 10.1103/PhysRevB.91.045124
  36. 10.1103/PhysRevA.50.5328
  37. 10.1016/j.cpc.2012.06.016
  38. 10.1103/PhysRevB.75.205122
  39. 10.1021/jp037716b
  40. 10.1103/PhysRevA.63.052508
  41. 10.1007/s10910-011-9860-1
  42. 10.1016/0375-9601(92)91058-Y
  43. 10.1103/PhysRevB.81.045206
  44. 10.1080/14786430903246353
  45. 10.1016/bs.aiq.2015.02.004
  46. 10.1103/PhysRevB.88.161108
  47. 10.1103/PhysRevB.86.115101
  48. 10.1103/PhysRevB.80.245120
  49. 10.1002/qua.22312
  50. 10.1103/PhysRevB.92.117101
  51. 10.1103/PhysRevB.92.117102
  52. 10.1063/1.1321308
  53. Wang, Y. A.; Carter, E. A.Theoretical methods in condensed phase chemistry;Springer: 2002; pp117–184.
  54. 10.1039/C5CP01211B
  55. 10.1103/PhysRevLett.106.186406
  56. 10.1007/s10820-006-9019-8
  57. 10.1103/PhysRevB.53.9509
  58. 10.1103/PhysRevB.57.4857
  59. 10.1103/PhysRevLett.111.066402
  60. 10.1103/PhysRevB.45.13196
  61. 10.1103/PhysRevB.58.13465
  62. 10.1103/PhysRevB.60.16350
  63. 10.1002/qua.24937
  64. 10.1002/qua.24939
  65. 10.1063/1.4834075
  66. 10.1063/1.1565316
  67. 10.1063/1.1872832
  68. 10.1021/jp1029745
  69. 10.1063/1.4870763
  70. 10.1103/PhysRevA.38.625
  71. 10.1103/PhysRevA.59.2670
  72. 10.1021/ct400129d
  73. 10.1063/1.3059783
  74. 10.1039/C2CP23142E
  75. 10.1002/qua.25040
  76. Huang, P.S.; Avron, H.; Sainath, T.; Sindhwani, V.; Ramabhadran, B.Kernel methods match Deep Neural Networks on TIMIT. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. 2014; pp205–209. (10.1109/ICASSP.2014.6853587)
  77. 10.1016/0893-6080(91)90009-T
  78. {'key': 'ref78/cit78', 'first-page': '1', 'volume': '10', 'author': 'Larochelle H.', 'year': '2009', 'journal-title': 'J. Mach. Learn. Res.'} / J. Mach. Learn. Res. by Larochelle H. (2009)
  79. 10.1113/jphysiol.1968.sp008455
  80. 10.1038/nature14539
  81. {'key': 'ref81/cit81', 'first-page': '1097', 'author': 'Krizhevsky A.', 'year': '2012', 'journal-title': 'Advances in neural information processing systems'} / Advances in neural information processing systems by Krizhevsky A. (2012)
  82. 10.1080/00268971003662896
  83. 10.1080/00268979909482950
  84. 10.1002/(SICI)1097-461X(1997)61:5<835::AID-QUA9>3.3.CO;2-#
  85. Kavzoglu, T.Determining optimum structure for artificial neural networks.Proceedings of the 25th Annual Technical Conference and Exhibition of the Remote Sensing Society; 1999; pp675–682.
  86. 10.1007/PL00011414
  87. 10.1038/323533a0
  88. {'key': 'ref88/cit88', 'first-page': '83', 'volume': '27', 'author': 'Hastie T.', 'year': '2005', 'journal-title': 'Math. Intel.'} / Math. Intel. by Hastie T. (2005)
  89. 10.1145/2623330.2623612
  90. Shiozaki, T.; Parker, S.; Reynolds, R.; Le, H.A.; Kim, I.; MacLeod, M.; Kelley, M.; Caldwell, M.; Bates, J.BAGEL, Brilliantly Advanced General Electronic-structure Library.
  91. 10.1016/j.cpc.2012.05.007
  92. {'key': 'ref92/cit92', 'first-page': '48', 'volume': '15', 'author': 'Lebedev V. I.', 'year': '1975', 'journal-title': 'Zh. Vychisl. Mater. Mater. Fiz.'} / Zh. Vychisl. Mater. Mater. Fiz. by Lebedev V. I. (1975)
  93. 10.1063/1.454033
  94. 10.1080/00268976.2014.952696
  95. 10.1063/1.464913
  96. Goodfellow, I. J.; Shlens, J.; Szegedy, C.arXiv:1412.6572. arXiv.org e-Print archive2014, http://arxiv.org/abs/1412.6572v3(accessed Jan 21, 2016).
  97. Burger, H. C.; Schuler, C. J.; Harmeling, S.Image denoising: Can plain Neural Networks compete with BM3D? Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. 2012; pp2392–2399. (10.1109/CVPR.2012.6247952)
  98. 10.4208/cicp.190111.090911a
  99. Snyder, J. C.; Mika, S.; Burke, K.; Müller, K.R.Empirical Inference;Springer: 2013; pp245–259. (10.1007/978-3-642-41136-6_21)
  100. 10.1103/PhysRevA.38.3098
  101. 10.1103/PhysRevB.37.785
Dates
Type When
Created 9 years, 7 months ago (Jan. 26, 2016, 5:40 p.m.)
Deposited 2 months, 4 weeks ago (June 1, 2025, 3:10 a.m.)
Indexed 3 days, 16 hours ago (Aug. 27, 2025, 12:10 p.m.)
Issued 9 years, 6 months ago (Feb. 8, 2016)
Published 9 years, 6 months ago (Feb. 8, 2016)
Published Online 9 years, 6 months ago (Feb. 8, 2016)
Published Print 9 years, 5 months ago (March 8, 2016)
Funders 2
  1. College of Science, University of Notre Dame
  2. Department of Chemistry and Biochemistry, University of Notre Dame

@article{Yao_2016, title={Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks}, volume={12}, ISSN={1549-9626}, url={http://dx.doi.org/10.1021/acs.jctc.5b01011}, DOI={10.1021/acs.jctc.5b01011}, number={3}, journal={Journal of Chemical Theory and Computation}, publisher={American Chemical Society (ACS)}, author={Yao, Kun and Parkhill, John}, year={2016}, month=feb, pages={1139–1147} }