Crossref journal-article
Oxford University Press (OUP)
Microscopy and Microanalysis (286)
Abstract

A fixed-bed reactor has been designed and constructed for ex situ transmission electron microscopy (TEM) studies of heterogeneous catalysts. Theex situfacility exposes a fully prepared TEM sample on a grid to actual process conditions (e.g., temperature, pressure, gas composition, etc.) by placing the grid at the exit section of a conventional fixed-bed reactor. A unique reactor design allows grid transfer into the electron microscope and back into the reactor again under a controlled (inert) environment, thus allowing time-resolved monitoring of catalyst morphology changes under realistic, well-controlled conditions. This facility stands completely independent of the TEM. Thus, no special TEM modifications are required and long-termex situstudies do not impact microscope utilization. The utility of the facility is demonstratedviathe oxidation of intermediate size (∼20–∼80 nm) supported copper particles.

Bibliography

Kliewer, C. E., Kiss, G., & DeMartin, G. J. (2005). Ex SituTransmission Electron Microscopy: A Fixed-Bed Reactor Approach. Microscopy and Microanalysis, 12(2), 135–144.

Authors 3
  1. Chris E. Kliewer (first)
  2. Gabor Kiss (additional)
  3. Gregory J. DeMartin (additional)
References 117 Referenced 18
  1. Zhu, Y. & Tafto, J. (1995).In-situ study of tetragonal-orthorhombic structural transformationinLa2−x Ba x CuO4 .Microsc Microanal 1(Suppl. 2),230–231.
  2. Lian, J. , Wang, L.M. , & Ewing, R.C. (2004).Phase decomposition-induced nanocrystal formation and structuraldisordering in murataite structure.Microsc Microanal 10(Suppl. 2),586–587. (10.1017/S1431927604882345)
  3. Pashley, D.W. , Stowell, M.J. , Jacobs, M.H. , & Law, T.J. (1964).The growth and structure of gold and silver deposits formed byevaporation inside an electron microscope.Phil Mag 10,127–158. (10.1080/14786436408224212)
  4. Kamino, T. , Yaguchi, T. , & Hashimoto, T. (2003).High temperature in situ electron microscopy using adedicated scanning transmission electron microscope.Microsc Microanal 9(Suppl. 2),922CD–923CD. (10.1017/S1431927603444619)
  5. Ge, D. , Domnich, V. , & Gogotsi, Y. (2003).In situ TEM study of thermal stabilities of metastable siliconphases.Microsc Microanal 9(Suppl. 2),484CD–485CD. (10.1017/S1431927603442426)
  6. Gai, P.L. , Smith, B.C. , & Owen, G. (1990).Bulk diffusion of metal particles on ceramic substrates.Nature 348,430–432.
  7. Sun, H.P. , Tian, W. , Chen, Y.B. , Yu, J.H. , Yeadon, M. , Boothroyd, C.B. , Lukaszew, R.A. , Clark, R. , & Pan, X.Q. (2004).Growth and structural evolution of nanosized Ni on (001) MgO by insitu TEM.Microsc Microanal 10(Suppl. 2),272–273. (10.1017/S1431927604885726)
  8. Hattar, K. , Han, J. , Saif, T. , & Robertson, I.M. (2004).Development and application of a MEMS-based in situ TEM strainingdevice for ultra-fine grained metallic systems.Microsc Microanal 10(Suppl. 2),50–51. (10.1017/S143192760488471X)
  9. Gai, P.L. , Kourtakis, K. , Coulson, D.R. , & Sonnichsen, G.C. (1997).HREM microstructural studies on the effect of steam exposure andcation promoters on vanadium phosphorous oxides: New correlations withn-butane oxidation reaction chemistry.J Phys Chem B 101,9916–9925. (10.1021/jp971683g)
  10. Minor, A.M. , Lilleodden, E.T. , Jin, M. , Stach, E.A. , Chrzan, D. , Morris, J.W., Jr. , Friedmann, T.A. , Xiao, X. , Auciello, O.H. , & Carlisle, J.A. (2003).In-situ nanoindentation—A unique probe of deformation responsein materials.Microsc Microanal 9(Suppl. 2),900–901. (10.1017/S1431927603444504)
  11. Yang, J.C. , Yeadon, M. , Kolasa, B. , & Gibson, M. (1999).In situ UHV-TEM oxidation and reduction of metals.Microsc Microanal 5(Suppl. 2),132–133. (10.1017/S1431927600013982)
  12. Castner, D.G. , Watson, P.R. , & Chan, I. (1989).X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, andanalytical electron microscopy studies in cobalt catalysts 1.Characterization of calcined catalysts.J Phys Chem 93,3188–3194.
  13. Thoni, W. & Hirsch, P.B. (1976).The reduction on MoO3 at low temperatures.Phil Mag 33,639–662. (10.1080/14786437608221125)
  14. Gai-Boyes, P.L. (1992).Defects in oxide catalysts: Fundamental studies of catalyst inaction.Catal Rev Sci Eng 34,1–54. (10.1080/01614949208021918)
  15. Zhou, G.W. & Yang, J.C. (2003a).Surface modifications: Evaporation of oxide islands on metalsurfaces investigated by in situ TEM.Microsc Microanal 9(Suppl. 2),298CD–299CD. (10.1017/S1431927603441494)
  16. Hirsch, P. , Howie, A. , Nicholson, R.B. , Pashley, D.W. , & Whelan, M.J. (1965).Electron Microscopy of Thin Crystals.New York:Robert E. Krieger Publishing Company.
  17. Sinclair, R. & Parker, M.A. (1986).High-resolution transmission electron microscopy of siliconre-growth at controlled elevated temperatures.Nature 322,531–533. (10.1038/322531a0)
  18. Helveg, S. , Lopez-Cartes, C. , Sehested, J. , Hansen, P.L. , Clausen, B.S. , Rostrup Nielsen, J.R. , Abild-Pedersen, F. , & Norskov, J.K. (2004).Atomic-scale imaging of carbon nanofiber growth.Nature 27,426–429. (10.1038/nature02278)
  19. Chen, J.J. & Ruckenstein, E. (1981).Role of interfacial phenomena in the behavior of alumina-supportedpalladium crystallites in oxygen.J Phys Chem 85,1606–1612. (10.1021/j150611a029)
  20. Konno, T.J. & Sinclair, R. (1995).Metal-mediated crystallization of amorphous silicon insilicon-silver layered systems.Phil Mag B 71,163–178. (10.1080/01418639508240304)
  21. Minor, A.M. , Stach, E.A. , & Morris, J.W., Jr. (2001b).Quantitative in situ nanoindentation of thin films in atransmission electron microscope.Microsc Microanal 7(Suppl. 2),912–913. (10.1017/S1431927600030634)
  22. Abrams, I.M. & McBain, J.W. (1944a).A closed cell for electron microscopy.J Appl Phys 15,607–609. (10.1063/1.1707475)
  23. Storaska, G.A. & Howe, J.M. (2000).In situ TEM investigation of the liquid/solid interface in Al-SiAlloys.Microsc Microanal 6(Suppl. 2),1068–1069. (10.1017/S1431927600037831)
  24. Kliewer, C.E. , Disko, M.M. , Soled, S.L. , DeMartin, G.J. , Baumgartner, J.E. , & Miseo, S. (2000).Copper oxidation via “ex-situ” TEM.Microsc Microanal 6(Suppl. 2),378–379. (10.1017/S1431927600034383)
  25. Bharadwaj, M.D. , Tropia, L. , Gibson, M. , & Yang, J.C. (2000).Initial kinetics of copper oxidation in different oxidizingatmospheres as studied by in situ UHV-TEM.Microsc Microanal 6(Suppl. 2),42–43. (10.1017/S1431927600032700)
  26. Gai, P.L. (1997a).A new structural transformation mechanism in catalyticoxides.Acta Cryst B 53,346–352. (10.1107/S0108768196014760)
  27. Wall, M.A. & Dahmen, U. (1997).Development of an in situ nanoindentation specimen holderfor the high voltage electron microscope.Microsc Microanal 3(Suppl. 2),593–594. (10.1017/S1431927600009855)
  28. Smith, D.A. , Mehta, S.C. , & Erb, U. (1995).In situ grain growth in electrodeposited nanocrystalline Ni-1.2wt%Palloy.Microsc Microanal 1(Suppl. 2),250–251.
  29. Boyes, E.D. (1997).Controlled environment (ECELL) HREM.Microsc Microanal 3(Suppl. 2),589–599. (10.1017/S1431927600009831)
  30. Crozier, P.A. & Dayte, A.K. (1999).In-situ HREM observation of reduction of PdO to Pd metal.Microsc Microanal 5(Suppl. 2),336–337. (10.1017/S1431927600015002)
  31. Chan, I. (1985).A controlled atmosphere specimen holder for transmission electronmicroscopy.J Electron Microsc Tech 2,525–532. (10.1002/jemt.1060020602)
  32. Potoczna-Petru, D. & Kepinski, L. (1991).Effect of oxidation-reduction treatment on the behavior of modelsilica supported cobalt catalysts.Catal Lett 9,355–362. (10.1007/BF00764826)
  33. Thomas, G. & Goringe, M.J. (1979).Transmission Electron Microscopy of Materials.New York:John Wiley and Sons.
  34. Chiou, W.A. & Mitra, R. (2000).In situ TEM study of straining of free standing nickel thinfilms.Microsc Microanal 6(Suppl. 2),464–465. (10.1017/S1431927600034814)
  35. Yeadon, M. , Lin, M. , Boothroyd, C.B. , Zheng, H. , & Loh, K.P. (2003).In situ growth of BN nanocages.Microsc Microanal 9(Suppl. 2),914CD–915CD. (10.1017/S1431927603444577)
  36. Gai, P.L. & Kourtakis, K. (1998).Effects of cation promoters in selective catalyzation ofn-butane.Microsc Microanal 4(Suppl. 2),742–743. (10.1017/S1431927600023837)
  37. Ruckenstein, E. & Lee, S.H. (1984).Redispersion and migration of nickel supported on alumina.J Catal 86,457–464. (10.1016/0021-9517(84)90395-6)
  38. Oh, S.G. , Rodriguez, N.M. , & Baker, R.T.K. (1992).In-situ electron microscopy studies of surface segregation inbimetallic catalyst particles.J Catal 136,584–597. (10.1016/0021-9517(92)90088-Y)
  39. Kliewer, C.E. , Disko, M.M. , Soled, S.L. , & DeMartin, G.J. (1999).A reactor for “ex-situ” TEM catalystcharacterization.Microsc Microanal 5(Suppl. 2),926–927. (10.1017/S1431927600017955)
  40. Minor, A.M. , Morris, J.W., Jr. , & Stach, E.A. (2001a).Quantitative in situ nanoindentation in an electronmicroscope.Appl Phys Lett 79,1625–1627. (10.1063/1.1400768)
  41. Chu, F. & Mitchell, T.E. (1995).TEM investigation of the low temperature phase ofHfV2 .Microsc Microanal 1(Suppl. 2),252–253.
  42. Sinclair, R. & Konno, T.J. (1994).In situ HREM: Application to metal-mediated crystallization.Ultramicroscopy 56,225–232. (10.1016/0304-3991(94)90162-7)
  43. Potoczna-Petru, D. , Jablonski, J.M. , Okal, O. , & Krajczyk, L. (1998).Influence of oxidation-reduction treatment on the microstructure ofCo/SiO2 catalyst.Appl Catal A: General 175,113–120. (10.1016/S0926-860X(98)00214-2)
  44. Oleshko, V.P. & Howe, J.M. (2004).In situ EFTEM/PEELS investigation of melting behavior ofindustrial Al-Si alloy small particles.Microsc Microanal 10(Suppl. 2),350–351. (10.1017/S1431927604884447)
  45. Rodriguez, N.M. , Oh, S.G. , Dalla-Betta, R.A. , & Baker, R.T.K. (1995).In situ electron microscopy of palladium supported onAl2O3, SiO2, and ZrO2 inoxygen.J Catal 157,676–686. (10.1006/jcat.1995.1333)
  46. Abrams, I.M. & McBain, J.W. (1944b).A closed cell for electron microscopy.Science 100,273–274. (10.1126/science.100.2595.273)
  47. Bellare, J.R. (1988).Cryo-electron and optical microscopy of surfactantmicrostructures.Ph.D. Thesis,University of Minnesota.
  48. Crozier, P.A. & Sharma, R. (1998).In situ oxidation and reduction of small Pd particles onsilica.Microsc Microanal 4(Suppl. 2),748–749. (10.1017/S143192769898028X)
  49. Liu, R.J. , Crozier, P.A. , Smith, C.M. , Hucul, D.A. , Blackson, J. , & Salaita, G. (2004).In situ TEM studies of sintering inPd/Al2O3 catalysts.Microsc Microanal 10(Suppl. 2),488CD–489CD. (10.1017/S1431927604884587)
  50. Parsons, D.F. (1974).Structure of wet specimens in electron microscopy.Science 186,407–414. (10.1126/science.186.4162.407)
  51. Boyes, E.D. & Gai, P.L. (2004).ETEM issues and opportunities for dynamic in situexperiments.Microsc Today 12,24–27. (10.1017/S1551929500054791)
  52. Hansen, T.W. , Wagner, J.B. , Hansen, P.L. , Dahl, S. , Topsoe, H. , & Jacobsen, C.J.H. (2001).Atomic-resolution in situ transmission electron microscopy of apromoter of a heterogeneous catalyst.Science 294,1508–1510. (10.1126/science.1064399)
  53. Gai, P.L. , Boyes, E.D. , & Bart, J.C.J. (1982).Electron microscopy of industrial catalysts.Phil Mag A 45,531–547. (10.1080/01418618208236188)
  54. Boyes, E.D. & Gai, P.L. (1997).Environmental high resolution electron microscopy and applicationsto chemical science.Ultramicroscopy 6,219–212. (10.1016/S0304-3991(96)00099-X)
  55. Luo, Z.P. , Miller, D.J. , & Mitchell, J.F. (2001).The charge ordering behavior of colossal magnetoresistive (CMR)layered compoundsLa2−2x Sr1+2x Mn2O7(x = 0.5–0.6).Microsc Microanal 7(Suppl. 2),410–411. (10.1017/S1431927600028129)
  56. Gai, P.L. (1999).Designer nanostructures of catalysts in theenvironmental-HREM.Microsc Microanal 5(Suppl. 2),686–687. (10.1017/S1431927600016755)
  57. Ross, F.M. , Williamson, M.J. , Tromp, R.M. , Hull, R. , & Vereecken, P.M. (2002).In situ transmission electron microscopy of copperelectrodeposition.Microsc Microanal 8(Suppl. 2),420–421. (10.1017/S1431927602100547)
  58. Gai, P.L. (2002).In situ molecular imaging of heterogeneous catalytic processes inliquid environments.Microsc Microanal 8(Suppl. 2),412–413. (10.1017/S143192760210050X)
  59. Medlin, D.L. (2001).In situ TEM analysis of facet motion in gold Σ = 3 {112}boundaries.Microsc Microanal 7(Suppl. 2),324–325. (10.1017/S1431927600027690)
  60. Butler, E.P. & Hale, K.F. (1981).Dynamic Experiments in the Electron Microscope.Amsterdam:North-Holland.
  61. Lian, J. , Wang, L.M. , & Ewing, R.C. (2002).In situ TEM study of order-disorder transition in murataiteceramics.Microsc Microanal 8(Suppl. 2),1424CD–1425CD. (10.1017/S1431927602103230)
  62. McCabe, R.J. , Misra, A. , & Mitchell, T.E. (2002).The use of stereomicroscopy in conjunction with in situ strainingTEM for studying dislocation behavior.Microsc Microanal 8(Suppl. 2),1382CD–1383CD. (10.1017/S1431927602103023)
  63. Medlin, D.L. (2002).Morphological evolution and junction dynamics at faceted grainboundaries.Microsc Microanal 8(Suppl. 2),1400CD–1401CD. (10.1017/S1431927602103114)
  64. Nakayama, T. , Arai, M. , & Nishiyama, Y. (1984).Dispersion of nickel particles supported on alumina and silica inoxygen and hydrogen.J Catal 87,108–115. (10.1016/0021-9517(84)90173-8)
  65. Klie, R.F. , Browning, N.D. , & Zhu, Y. (2002).Atomic scale characterization of oxygen vacancy dynamics by insitu reduction and analytical atomic resolution STEM.Microsc Microanal 8(Suppl. 2),1396CD–1370CD. (10.1017/S1431927602103096)
  66. Parkinson, G.M. (1991).Controlled environment transmission electron microscopy (CETEM) ofcatalysts. InProceedings of the Institute of Physics Electron Microscopy andAnalysis Group Conference, University of Bristol, UK & Institute of Physics Conference Series No. 119: Section 4.Humphreys, F.J. (Ed.), pp.151–156.New York:Institute of Physics.
  67. Boyes, E.D. (2004).ETEM issues and opportunities for dynamic in situexperiments.Microsc Microanal 10(Suppl. 2),130–131. (10.1017/S1431927604880097)
  68. Sushmna, I. & Ruckenstein, E. (1985).Role of physical and chemical interactions in the behavior ofsupported metal catalysts: Iron on alumina—A case study.J Catal 94,239–288. (10.1016/0021-9517(85)90100-9)
  69. Gai, P.L. , Kourtakis, K. , & Ziemecki, S. (2001).In situ nanoscale studies of liquid polymerization reactions in themanufacture of polyamides and combinatorial catalysts.Microsc Microanal 7(Suppl. 2),1060–1061. (10.1017/S1431927600031378)
  70. Liu, R.J. , Crozier, P.A. , Smith, C.M. , Hucul, D.A. , Blackson, J. , & Salaita, G. (2003).In situ TEM studies of sintering of Pd.alumina catalysts.Microsc Microanal 9(Suppl. 2),1024CD–1025CD.
  71. Howe, J.M. (1995).In situ hot stage high-resolution transmission electron microscopestudies of the mechanisms and kinetics of precipitation reactions.Microsc Microanal 1,228–229.
  72. Ross, F.M. & Searson, P.C. (1995).In situ microscopy of the anodic etching of silicon.Microsc Microanal 1(Suppl. 2),232–233. (10.1017/S0424820100137537)
  73. Sharma, R. , McKelvy, M.J. , Bearat, H. , Chizmeshya, A.V.G. , & Carpenter, R.W. (2002).Developing a mechanistic understanding of CO2 mineralsequestration process for power plants.Microsc Microanal 8(Suppl. 2),796CD–797CD. (10.1017/S1431927602105654)
  74. Gai, P.L. (1998).Direct probing of gas molecule-solid catalyst interactions on theatomic scale.Adv Mater 10,1259–1263. (10.1002/(SICI)1521-4095(199810)10:15<1259::AID-ADMA1259>3.0.CO;2-5)
  75. Gai, P.L. & Kourtakis, K. (1995).Solid-state defect mechanism in vanadyl pyrophosphate catalysts:Implications for selective oxidation.Science 267,661–663. (10.1126/science.267.5198.661)
  76. Gai, P.L. (2004).In situ environmental TEM (ETEM) of n-butane oxidation:Advances and challenges in the catalyst microstructural design.Microsc Microanal 10(Suppl. 2),38–39. (10.1017/S1431927604880073)
  77. Edington, J.W. (1976).Practical Electron Microscopy in Materials Science.Princeton, NJ:Van Nostrand Reinhold Company.
  78. Gai, P.L. , Kurtakis, K. , & Ziemecki, S. (2000).In situ environmental high resolution electron microscopy ofadiponitrile hydrogenation.Microsc Microanal 6(Suppl. 2),6–7. (10.1017/S1431927600032529)
  79. Gai, P.L. (1997b).Unveiling novel reaction processes in catalysis by environmentalHREM (EHREM).Microsc Microanal 3(Suppl. 2),617–618. (10.1017/S1431927600009971)
  80. Konno, T.J. & Sinclair, R. (1992).Crystallization of silicon in aluminum/amorphous siliconmultilayers.Phil Mag B 66,749–765. (10.1080/13642819208220126)
  81. Haque, M.A. , Saif, M.T.A. , Robach, J.S. , & Robertson, M. (2003).Correlating deformation mechanisms with mechanical properties infree stranding thin metallic films.Microsc Microanal 9(Suppl. 2),898CD–899CD. (10.1017/S1431927603444498)
  82. Fontana, M.G. & Greene, N.D. (1978).Corrosion Engineering,2nd ed. New York:McGraw-Hill Inc.
  83. Gai, P.L. (1981).Dynamic studies of metal oxide catalysts: MoO3 .Phil Mag A 43,841–855. (10.1080/01418618108239495)
  84. Sinclair, R. & Min, K.H. (2002).In situ HREM of crystallization reactions.Microsc Microanal 8(Suppl. 2),416–417. (10.1017/S1431927602100523)
  85. Dahmen, U. , Radetic, T. , Hagege, S. , Zhang, L. , & Johnson, E. (2003).TEM observations on the role of defects in melting, migration andtransformation of Pb-rich precipitates in Al.Microsc Microanal 9(Suppl. 2),54–55. (10.1017/S143192760344083X)
  86. Stach, E.A. , Kisielowski, C.F. , Wong, W.S. , Sands, T. , & Cheung, N.W. (2000b).Real time observations of nanopipe formation, dislocation motion,and nitrogen desorption in GaN.Microsc Microanal 6(Suppl. 2),1096–1097. (10.1557/PROC-622-T5.8.1)
  87. Yang, J.C. , Kolasa, B. , Gibson, J.M. , & Yeadon, M. (1998).Self-limiting oxidation of copper.Appl Phys Lett 73,2841–2843. (10.1063/1.122608)
  88. Allard, L.F. , Ailey, K.S. , Dayte, A.K. , & Bigelow, W.C. (1997).An ex situ reactor with anaerobic specimen transfercapabilities for TEM studies of reactive (catalyst) systems.Microsc Microanal 3(Suppl. 2),595–596. (10.1017/S1431927600009867)
  89. Nakayama, T. , Arai, M. , & Nishiyama, Y. (1983).Formation of pitted particles and redispersion in supported nickelcatalysts during heating in oxygen and hydrogen.J Catal 79,497–500. (10.1016/0021-9517(83)90347-0)
  90. Gai-Boyes, P.L. , Saltzberg, M.A. , & Vega, A. (1993).Structures and stabilization mechanisms in chemically stabilizedceramics.J Sol State Chem 106,35–47. (10.1006/jssc.1993.1262)
  91. Potoczna-Petru, D. & Krajczyk, L. (1995).Microstructure evolution of Co particles supported on carbon inducedby oxidation-reduction treatment.J Mater Sci Lett 14,1294–1297. (10.1007/BF01262272)
  92. Sushmna, I. & Ruckenstein, E. (1984).Oscillations in crystallite shape during heating in hydrogen ofmodel iron/alumina catalysts.J Catal 90,241–255. (10.1016/0021-9517(84)90252-5)
  93. Sharma, R. & Crozier, P. (2002).In situ determination of local Ce oxidation states during redoxreactions.Microsc Microanal 8(Suppl. 2),600CD–601CD. (10.1017/S1431927602105940)
  94. Sharma, R. & Iqbal, Z. (2004).In situ observations of carbon nanotube formation usingenvironmental transmission electron microscopy.Appl Phys Lett 84,990–992. (10.1063/1.1646465)
  95. Cronin, S.B. , Lin, Y.M. , Rabin, O. , Black, M.R. , Gai, P.L. , Dresselhaus, G. , & Dresselhaus, M. (2001).Bismuth nanowires for potential applications in nanoscaleelectronics technology.Microsc Microanal 7(Suppl. 2),418–419. (10.1017/S1431927600028166)
  96. Zhou, G.W. & Yang, J.C. (2003b).Temperature effect on the Cu2O oxide morphology createdby oxidation of Cu (001) as investigated by in situ TEM.Appl Surf Sci 210,165–170. (10.1016/S0169-4332(03)00159-4)
  97. Yang, J.C. , Kolasa, B. , Gibson, J.M. , & Yeadon, M. (1997).Oxygen surface diffusion in three-dimensional Cu2O growthon Cu(001) thin films.Appl Phys Lett 70,3522–3524. (10.1063/1.119220)
  98. Ruckenstein, E. & Chen, J.J. (1982).Wetting phenomena during alternate heating in O2 andH2 of supported metal crystallites.J Colloid Interface Sci 86,1–11. (10.1016/0021-9797(82)90034-0)
  99. Norton, M.G. , Bentley, J. , & Biggers, R.R. (1995).In situ electron microscope observations of structuraltransformations in single crystal lanthanum aluminate.Microsc Microanal 1(Suppl. 2),238–239.
  100. Sharma, R. & Crozier, P.A. (2000).Quantification of CeO reduction by in situ electronenergy-loss spectroscopy.Microsc Microanal 6(Suppl. 2),12–13. (10.1017/S1431927600032554)
  101. Zhou, G.W. & Yang, J.C. (2002).Initial oxidation kinetics of copper films investigated by insitu UHV-TEM.Microsc Microanal 8(Suppl. 2),1406CD–1407CD. (10.1017/S143192760210314X)
  102. Castner, D.G. & Chan, I. (1986).Controlled atmosphere catalyst characterization by X-rayphotoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), andanalytical electron microscopy (AEM). InMicrobeam Analysis Proceedings, Romig, A.D., Jr. , Chambers, W.F. (Eds.), pp.617–619.San Francisco:San Francisco Press, Inc.
  103. Sharma, R. , McKelvy, M.J. , Bearat, H. , Chizmeshya, A.V.G. , & Carpenter, R.W. (2001).In situ observation of nanocrystal formation viadehydroxylation.Microsc Microanal 7(Suppl. 2),438–439. (10.1017/S1431927600028269)
  104. Crozier, P.A. (2001).In situ characterization of dynamic changes in the microstructureand chemistry of catalysts.Microsc Microanal 7(Suppl. 2),1058–1059. (10.1017/S1431927600031366)
  105. Yang, J.C. & Zhou, G. (2003).Nano-oxide formation by in situ oxidation of copper thinfilms.Microsc Microanal 9(Suppl. 2),296CD–297CD. (10.1017/S1431927603441482)
  106. Shewmon, P.G. (1969).Transformations in Metals.New York:McGraw-Hill Inc.
  107. Zhou, G.W. , Bharadwaj, M.D. , & Yang, J.C. (2001).Initial oxidation kinetics of copper (110) thin films asinvestigated by in situ UHV-TEM.Microsc Microanal 7(Suppl. 2),1274–1275. (10.1017/S143192760003244X)
  108. Wang, Z.L. , Petroski, J.M. , Green, T.C. , & El-Sayed, M.A. (1998).Shape transformation and surface melting of cubic and tetragonalplatinum nanocrystals.J Phys Chem B 102,6145–6151. (10.1021/jp981594j)
  109. Wang, L. & Yang, J.C. (2004).Nano-oxidation dynamics of (001) Cu50at%Au thin film by in situUHV-TEM.Microsc Microanal 10(Suppl. 2),382CD–383CD. (10.1017/S1431927604886008)
  110. Sharma, R. (2004).Understanding the carbon nanotube growth mechanism by insitu microscopy.Microsc Microanal 10(Suppl. 2),368–369. (10.1017/S1431927604885143)
  111. Parkinson, G.M. & White, D. (1986).The application of a controlled atmosphere reaction cell forstudying electroactive polymers by TEM. InProceedings of the XI International Congress on ElectronMicroscopy, Koyoto, Japan, pp.331–332.
  112. Sawyer, L.C. & Grubb, D.T. (1987).Polymer Microscopy.New York:Chapman and Hall. (10.1007/978-94-009-3139-8)
  113. Alani, P. & Pan, M. (2000).“In-situ” TEM studies and “real-time”digital imaging.Microsc Microanal 6(Suppl. 2),1018–1019. (10.1017/S1431927600037582)
  114. Sharma, R. (2003).In situ observations of carbon nanotube formation and growthprocess.Microsc Microanal 9(Suppl. 2),302CD–302CD. (10.1017/S1431927603441512)
  115. Stach, E.A. , Hull, R. , Tromp, R.M. , Ross, F.M. , Reuter, M.C. , & Beam, J.C. (1999).In situ TEM studies of the interaction between dislocations in SiGeheterostructures.Microsc Microanal 5(Suppl. 2),728–729. (10.1017/S1431927600016962)
  116. Yagi, K. , Kobayashi, K. , Tanishiro, Y. , & Takayanagi, K. (1985).In situ electron microscope of the initial stage of metal growth onmetals.Thin Solid Films 126,95–105. (10.1016/0040-6090(85)90180-4)
  117. Stach, E.A. , Dahmen, U. , & Nix, W.D. (2000a).Real time observations of dislocation mediated plasticity in theepitaxial aluminum (110)/silicon (001) thin film system.Microsc Microanal 6(Suppl. 2),438–439. (10.1017/S1431927600034681)
Dates
Type When
Created 19 years, 5 months ago (March 10, 2006, 5:26 p.m.)
Deposited 2 years, 3 months ago (May 6, 2023, 2:39 p.m.)
Indexed 1 year, 1 month ago (June 26, 2024, 10:54 p.m.)
Issued 19 years, 8 months ago (Dec. 9, 2005)
Published 19 years, 8 months ago (Dec. 9, 2005)
Published Online 19 years, 8 months ago (Dec. 9, 2005)
Published Print 19 years, 4 months ago (April 1, 2006)
Funders 0

None

@article{Kliewer_2005, title={Ex SituTransmission Electron Microscopy: A Fixed-Bed Reactor Approach}, volume={12}, ISSN={1435-8115}, url={http://dx.doi.org/10.1017/s1431927606060077}, DOI={10.1017/s1431927606060077}, number={2}, journal={Microscopy and Microanalysis}, publisher={Oxford University Press (OUP)}, author={Kliewer, Chris E. and Kiss, Gabor and DeMartin, Gregory J.}, year={2005}, month=dec, pages={135–144} }