Crossref journal-article
Cambridge University Press (CUP)
European Journal of Applied Mathematics (56)
Abstract

An algorithm, based on a discrete nonlinear model, is presented for evaluation of the critical shear stress required to move a dislocation through a lattice. The stability of solutions of the corresponding evolution problem is analysed. Numerical results provide upper and lower bounds for the critical shear stress.

Bibliography

MOVCHAN, A. B., BULLOUGH, R., & WILLIS, J. R. (1998). Stability of a dislocation : Discrete model. European Journal of Applied Mathematics, 9(4), 373–396.

Authors 3
  1. A. B. MOVCHAN (first)
  2. R. BULLOUGH (additional)
  3. J. R. WILLIS (additional)
References 0 Referenced 24

None

Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 9:47 a.m.)
Deposited 6 years, 4 months ago (March 29, 2019, 3:29 p.m.)
Indexed 1 year, 6 months ago (Jan. 30, 2024, 2:24 a.m.)
Issued 27 years ago (Aug. 1, 1998)
Published 27 years ago (Aug. 1, 1998)
Published Online 27 years ago (Aug. 1, 1998)
Published Print 27 years ago (Aug. 1, 1998)
Funders 0

None

@article{MOVCHAN_1998, title={Stability of a dislocation : Discrete model}, volume={9}, ISSN={1469-4425}, url={http://dx.doi.org/10.1017/s0956792598003489}, DOI={10.1017/s0956792598003489}, number={4}, journal={European Journal of Applied Mathematics}, publisher={Cambridge University Press (CUP)}, author={MOVCHAN, A. B. and BULLOUGH, R. and WILLIS, J. R.}, year={1998}, month=aug, pages={373–396} }