Abstract
SynopsisIn this paper we show that in O(2) symmetric systems, structurally stable, asymptoticallystable, heteroclinic cycles can be found which connect periodic solutions with steady states and periodic solutions with periodic solutions. These cycles are found in the third-order truncated normal forms of specific codimension two steady-state/Hopf and Hopf/Hopf mode interactions.We find these cycles using group-theoretic techniques; in particular, we look for certainpatterns in the lattice of isotropy subgroups. Once the pattern has been identified, the heteroclinic cycle can be constructed by decomposing the vector field on fixed-point subspaces into phase/amplitude equations (it is here that we use the assumption of normal form). The final proof of existence (and stability) relies on explicit calculations showing that certain eigenvalue restrictions can be satisfied.
References
26
Referenced
74
10.2307/2372437
- 19 Krupa M. . Bifurcations of critical group orbits (Thesis, University of Houston, 1988). Cf. Bifurcations of relative equilibria. SIAM J. Appl. Math, (submitted)
10.1017/S0305004100064732
10.1007/978-1-4612-4574-2
10.1016/0167-2789(88)90063-2
10.1007/BF00251598
- 8 Field M. . Equivariant bifurcation theory and symmetry breaking. Dyn. Diff. Eqn. (to appear).
{'key': 'S0308210500024173_ref006', 'first-page': '255', 'article-title': 'Hopf—Hopf mode interactions with O(2) symmetry', 'volume': '1', 'author': 'Chossat', 'year': '1986', 'journal-title': 'Dyn. Stab. Syst.'}
/ Dyn. Stab. Syst. / Hopf—Hopf mode interactions with O(2) symmetry by Chossat (1986)10.1007/BF00284507
10.1126/science.208.4440.173
10.1016/0167-2789(88)90032-2
10.1090/conm/028/752001
10.2307/2372774
10.1016/0375-9601(87)90008-9
10.1007/BF00280698
10.1137/0129022
10.1007/BF01048454
10.1017/S0022112088000746
- 10 Field M. and Richardson R. W. . New examples of symmetry breaking bifurcations and the distribution of symmetry breaking isotropy types (in preparation).
10.1137/0517023
- 18 Kevrekidis I. G. , Nicolaencko B. and Scovel J. C. . Back in the saddle again: a computer assisted study of the Kuramoto-Shivashinsky equation. SIAM J. Appl. Math, (to appear).
{'key': 'S0308210500024173_ref001', 'volume-title': 'More on structurally stable H-orbits', 'author': 'Armbruster', 'year': '1989'}
/ More on structurally stable H-orbits by Armbruster (1989){'key': 'S0308210500024173_ref020', 'first-page': '3', 'article-title': 'Lie dynamical systems', 'volume': '109–110', 'author': 'Markus', 'year': '1983', 'journal-title': 'Asterisque'}
/ Asterisque / Lie dynamical systems by Markus (1983)10.1007/978-3-642-67220-0_39
{'key': 'S0308210500024173_ref016', 'volume-title': 'Differential Equations, Dynamical Systems, and Linear Algebra', 'author': 'Hirsch', 'year': '1974'}
/ Differential Equations, Dynamical Systems, and Linear Algebra by Hirsch (1974)10.1090/S0002-9947-1980-0561832-4
Dates
Type | When |
---|---|
Created | 13 years, 9 months ago (Nov. 14, 2011, 8:19 a.m.) |
Deposited | 6 years, 3 months ago (May 19, 2019, 5:14 p.m.) |
Indexed | 1 month ago (July 30, 2025, 10:38 a.m.) |
Issued | 36 years, 7 months ago (Jan. 1, 1989) |
Published | 36 years, 7 months ago (Jan. 1, 1989) |
Published Online | 13 years, 9 months ago (Nov. 14, 2011) |
Published Print | 36 years, 7 months ago (Jan. 1, 1989) |
@article{Melbourne_1989, title={Heteroclinic cycles involving periodic solutions in mode interactions with O(2) symmetry}, volume={113}, ISSN={1473-7124}, url={http://dx.doi.org/10.1017/s0308210500024173}, DOI={10.1017/s0308210500024173}, number={3–4}, journal={Proceedings of the Royal Society of Edinburgh: Section A Mathematics}, publisher={Cambridge University Press (CUP)}, author={Melbourne, I. and Chossat, P. and Golubitsky, M.}, year={1989}, pages={315–345} }