Crossref journal-article
Cambridge University Press (CUP)
Proceedings of the Royal Society of Edinburgh: Section A Mathematics (56)
Abstract

SynopsisIn this paper we show that in O(2) symmetric systems, structurally stable, asymptoticallystable, heteroclinic cycles can be found which connect periodic solutions with steady states and periodic solutions with periodic solutions. These cycles are found in the third-order truncated normal forms of specific codimension two steady-state/Hopf and Hopf/Hopf mode interactions.We find these cycles using group-theoretic techniques; in particular, we look for certainpatterns in the lattice of isotropy subgroups. Once the pattern has been identified, the heteroclinic cycle can be constructed by decomposing the vector field on fixed-point subspaces into phase/amplitude equations (it is here that we use the assumption of normal form). The final proof of existence (and stability) relies on explicit calculations showing that certain eigenvalue restrictions can be satisfied.

Bibliography

Melbourne, I., Chossat, P., & Golubitsky, M. (1989). Heteroclinic cycles involving periodic solutions in mode interactions with O(2) symmetry. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 113(3–4), 315–345.

Authors 3
  1. I. Melbourne (first)
  2. P. Chossat (additional)
  3. M. Golubitsky (additional)
References 26 Referenced 74
  1. 10.2307/2372437
  2. 19 Krupa M. . Bifurcations of critical group orbits (Thesis, University of Houston, 1988). Cf. Bifurcations of relative equilibria. SIAM J. Appl. Math, (submitted)
  3. 10.1017/S0305004100064732
  4. 10.1007/978-1-4612-4574-2
  5. 10.1016/0167-2789(88)90063-2
  6. 10.1007/BF00251598
  7. 8 Field M. . Equivariant bifurcation theory and symmetry breaking. Dyn. Diff. Eqn. (to appear).
  8. {'key': 'S0308210500024173_ref006', 'first-page': '255', 'article-title': 'Hopf—Hopf mode interactions with O(2) symmetry', 'volume': '1', 'author': 'Chossat', 'year': '1986', 'journal-title': 'Dyn. Stab. Syst.'} / Dyn. Stab. Syst. / Hopf—Hopf mode interactions with O(2) symmetry by Chossat (1986)
  9. 10.1007/BF00284507
  10. 10.1126/science.208.4440.173
  11. 10.1016/0167-2789(88)90032-2
  12. 10.1090/conm/028/752001
  13. 10.2307/2372774
  14. 10.1016/0375-9601(87)90008-9
  15. 10.1007/BF00280698
  16. 10.1137/0129022
  17. 10.1007/BF01048454
  18. 10.1017/S0022112088000746
  19. 10 Field M. and Richardson R. W. . New examples of symmetry breaking bifurcations and the distribution of symmetry breaking isotropy types (in preparation).
  20. 10.1137/0517023
  21. 18 Kevrekidis I. G. , Nicolaencko B. and Scovel J. C. . Back in the saddle again: a computer assisted study of the Kuramoto-Shivashinsky equation. SIAM J. Appl. Math, (to appear).
  22. {'key': 'S0308210500024173_ref001', 'volume-title': 'More on structurally stable H-orbits', 'author': 'Armbruster', 'year': '1989'} / More on structurally stable H-orbits by Armbruster (1989)
  23. {'key': 'S0308210500024173_ref020', 'first-page': '3', 'article-title': 'Lie dynamical systems', 'volume': '109–110', 'author': 'Markus', 'year': '1983', 'journal-title': 'Asterisque'} / Asterisque / Lie dynamical systems by Markus (1983)
  24. 10.1007/978-3-642-67220-0_39
  25. {'key': 'S0308210500024173_ref016', 'volume-title': 'Differential Equations, Dynamical Systems, and Linear Algebra', 'author': 'Hirsch', 'year': '1974'} / Differential Equations, Dynamical Systems, and Linear Algebra by Hirsch (1974)
  26. 10.1090/S0002-9947-1980-0561832-4
Dates
Type When
Created 13 years, 9 months ago (Nov. 14, 2011, 8:19 a.m.)
Deposited 6 years, 3 months ago (May 19, 2019, 5:14 p.m.)
Indexed 1 month ago (July 30, 2025, 10:38 a.m.)
Issued 36 years, 7 months ago (Jan. 1, 1989)
Published 36 years, 7 months ago (Jan. 1, 1989)
Published Online 13 years, 9 months ago (Nov. 14, 2011)
Published Print 36 years, 7 months ago (Jan. 1, 1989)
Funders 0

None

@article{Melbourne_1989, title={Heteroclinic cycles involving periodic solutions in mode interactions with O(2) symmetry}, volume={113}, ISSN={1473-7124}, url={http://dx.doi.org/10.1017/s0308210500024173}, DOI={10.1017/s0308210500024173}, number={3–4}, journal={Proceedings of the Royal Society of Edinburgh: Section A Mathematics}, publisher={Cambridge University Press (CUP)}, author={Melbourne, I. and Chossat, P. and Golubitsky, M.}, year={1989}, pages={315–345} }