Abstract
The partition function F(θ) is of fundamental importance in the theory of the specific heat of gases. Once it is known, the rotational specific heat of a perfect gas is given bywhere R is the gram-molecular gas constant, and θ bears the relationto the absolute temperature T, k being Boltzmann's constant.
References
6
Referenced
20
{'key': 'S0305004100011403_ref006', 'first-page': '48', 'volume': '2', 'author': 'Tannery', 'year': '1896', 'journal-title': 'Fonctions elliptiques'}
/ Fonctions elliptiques by Tannery (1896)-
Proc. Camb. Phil. Soc. 24, p. 280 (1928).
(
10.1017/S0305004100015796
) - Fowler , Statistical Mechanics, p. 34 (1929).
{'key': 'S0305004100011403_ref003', 'first-page': '308', 'volume': '1', 'author': 'Bieberbach', 'year': '1931', 'journal-title': 'Lehrbuch der Funktionentheorie'}
/ Lehrbuch der Funktionentheorie by Bieberbach (1931){'key': 'S0305004100011403_ref004', 'author': 'Knopp', 'year': '1928', 'journal-title': 'Theory and Application of Infinite Series'}
/ Theory and Application of Infinite Series by Knopp (1928)- Borel E. , Leçons sur les séries divergentes, p. 32 (1928)
Dates
Type | When |
---|---|
Created | 16 years, 9 months ago (Nov. 7, 2008, 11:03 a.m.) |
Deposited | 6 years, 2 months ago (June 8, 2019, 5:08 p.m.) |
Indexed | 1 year, 6 months ago (Feb. 10, 2024, 8:04 a.m.) |
Issued | 92 years, 7 months ago (Jan. 1, 1933) |
Published | 92 years, 7 months ago (Jan. 1, 1933) |
Published Online | 16 years, 10 months ago (Oct. 24, 2008) |
Published Print | 92 years, 7 months ago (Jan. 1, 1933) |
@article{Viney_1933, title={Asymptotic expansions of the expressions for the partition function and the rotational specific heat of a rigid polyatomic molecule for high temperatures}, volume={29}, ISSN={1469-8064}, url={http://dx.doi.org/10.1017/s0305004100011403}, DOI={10.1017/s0305004100011403}, number={1}, journal={Mathematical Proceedings of the Cambridge Philosophical Society}, publisher={Cambridge University Press (CUP)}, author={Viney, Irene E.}, year={1933}, month=jan, pages={142–148} }