10.1017/s0143385700009615
Crossref journal-article
Cambridge University Press (CUP)
Ergodic Theory and Dynamical Systems (56)
Abstract

AbstractWe consider diffeomorphisms of surfaces leaving invariant an ergodic Borel probability measure μ. Define HD (μ) to be the infimum of Hausdorff dimension of sets having full μ-measure. We prove a formula relating HD (μ) to the entropy and Lyapunov exponents of the map. Other classical notions of fractional dimension such as capacity and Rényi dimension are discussed. They are shown to be equal to Hausdorff dimension in the present context.

Bibliography

Young, L.-S. (1982). Dimension, entropy and Lyapunov exponents. Ergodic Theory and Dynamical Systems, 2(1), 109–124.

Authors 1
  1. Lai-Sang Young (first)
References 22 Referenced 479
  1. 10.1017/S0143385700001309
  2. 10.1090/S0002-9904-1967-11798-1
  3. 10.1007/BF01208896
  4. 10.1007/BFb0081279
  5. [18] Rényi A. . Dimension, entropy and information. Transactions of the second Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (1957) 545–556.
  6. [8] Frederickson P. , Kaplan J. , Yorke E. & Yorke J. . The Liapunov dimension of strange attractors. Preprint.
  7. {'key': 'S0143385700009615_ref011', 'first-page': '861', 'article-title': 'A new invariant for transitive dynamical systems', 'volume': '119', 'author': 'Kolmogorov', 'year': '1958', 'journal-title': 'Dokl. Akad. Nauk SSSR'} / Dokl. Akad. Nauk SSSR / A new invariant for transitive dynamical systems by Kolmogorov (1958)
  8. 10.1017/S0143385700001371
  9. 10.1093/qmath/os-20.1.31
  10. 10.1007/BF02684777
  11. 10.1007/BF01448030
  12. 10.1007/BF02684768
  13. {'key': 'S0143385700009615_ref009', 'first-page': '228', 'volume-title': 'Chaotic Behavior of Multidimensional Difference Equations', 'author': 'Kaplan', 'year': '1979'} / Chaotic Behavior of Multidimensional Difference Equations by Kaplan (1979)
  14. 10.1007/BF02584795
  15. [5] Brin M. & Katok A. . On local entropy. Preprint.
  16. 10.1017/S0143385700001188
  17. 10.1007/BF01762666
  18. 10.1070/RM1977v032n04ABEH001639
  19. {'key': 'S0143385700009615_ref002', 'volume-title': 'Ergodic Theory and Information', 'author': 'Billingsley', 'year': '1965'} / Ergodic Theory and Information by Billingsley (1965)
  20. {'key': 'S0143385700009615_ref006', 'first-page': '1135', 'article-title': 'Dimension de Hausdorff des attracteurs', 'volume': '24', 'author': 'Douady', 'year': '1980', 'journal-title': 'C.R. Acad. Sci.'} / C.R. Acad. Sci. / Dimension de Hausdorff des attracteurs by Douady (1980)
  21. {'key': 'S0143385700009615_ref015', 'volume-title': 'Differentiable Dynamics', 'author': 'Nitecki', 'year': '1971'} / Differentiable Dynamics by Nitecki (1971)
  22. {'key': 'S0143385700009615_ref016', 'first-page': '179', 'article-title': 'A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems', 'volume': '19', 'author': 'Oseledec', 'year': '1968', 'journal-title': 'Trudy Moskov. Mat. Obšč.'} / Trudy Moskov. Mat. Obšč. / A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems by Oseledec (1968)
Dates
Type When
Created 16 years ago (Aug. 13, 2009, 5:45 a.m.)
Deposited 6 years, 3 months ago (May 24, 2019, 1:41 p.m.)
Indexed 2 weeks, 2 days ago (Aug. 12, 2025, 6:09 p.m.)
Issued 43 years, 5 months ago (March 1, 1982)
Published 43 years, 5 months ago (March 1, 1982)
Published Online 16 years ago (Aug. 13, 2009)
Published Print 43 years, 5 months ago (March 1, 1982)
Funders 0

None

@article{Young_1982, title={Dimension, entropy and Lyapunov exponents}, volume={2}, ISSN={1469-4417}, url={http://dx.doi.org/10.1017/s0143385700009615}, DOI={10.1017/s0143385700009615}, number={1}, journal={Ergodic Theory and Dynamical Systems}, publisher={Cambridge University Press (CUP)}, author={Young, Lai-Sang}, year={1982}, month=mar, pages={109–124} }