Abstract
A method is described for solving the integral equations governing Stokes flow in arbitrary two-dimensional domains. It is demonstrated that the boundary-integral method provides an accurate, efficient and easy-to-implement strategy for the solution of Stokes-flow problems. Calculations are presented for simple shear flow in a variety of geometries including cylindrical and rectangular, ridges and cavities. A full description of the flow field is presented including streamline patterns, velocity profiles and shear-stress distributions along the solid surfaces. The results are discussed with special relevance to convective transport processes in low-Reynolds-number flows.
References
30
Referenced
153
-
Takematsu, M. 1966 Slow viscous flow past a cavity.J. Phys. Soc. Japan 21,1816–1821.
(
10.1143/JPSJ.21.1816
) -
Kim, M.-U. 1980 Slow viscous flow around a vertical fence on a plane.J. Phys. Soc. Japan 49,2387–2391.
(
10.1143/JPSJ.49.2387
) -
Lee, S. H. & Leal, L. G. 1982 The motion of a sphere in the presence of a deformable interface.J. Colloid Interface Sci. 87,81–106.
(
10.1016/0021-9797(82)90373-3
) -
Hasimoto, H. & Sano, O. 1980 Stokeslets and eddies in creeping flow.Ann. Rev. Fluid Mech. 12,335–363.
(
10.1146/annurev.fl.12.010180.002003
) - Malkus, D. S. 1976 InProceedings of the VII Intl Congr. on Rheology,Gothenberg, Sweden (ed. C. Klason & J. Kubat ), pp.00–00.
-
O'Brien, V. 1983 Flow in pressure holes.J. Non-Newtonian Fluid Mech. 12,383–386.
(
10.1016/0377-0257(83)85011-3
) -
Trogdon, S. A. & Joseph, D. D. 1982 Matched eigenfunction expansions for slow flow over a slot.J. Non-Newtonian Fluid Mech. 10,185–213.
(
10.1016/0377-0257(82)80001-3
) -
Wakiya, S. 1975 Application of bipolar coordinates to the two dimensional creeping motion of a liquid. I. Flow over a projection or depression on a wall.J. Phys. Soc. Japan 39,1113–1120.
(
10.1143/JPSJ.39.1113
) -
Higdon, J. J. L. 1979a The generation of feeding currents by flagellar motions.J. Fluid Mech. 94,305–330.
(
10.1017/S002211207900104X
) -
Dean, W. R. & Montagnon, P. E. 1949 On the steady motion of a viscous liquid in a corner.Proc. Camb. Phil. Soc. 45,389–394.
(
10.1017/S0305004100025019
) - Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics,2nd edn. Noordhoff.
-
Mir-Mohamad-Sadegh, S. & Rajagopal, K. R. 1980 The flow of a non-Newtonian fluid past projections and depressions. Trans. ASME E:J. Appl. Mech. 47,485–488.
(
10.1115/1.3153718
) -
Jeffrey, D. J. & Sherwood, J. D. 1980 Streamline patterns and eddies in low Reynolds number flow.J. Fluid Mech. 96,315–334.
(
10.1017/S0022112080002145
) -
O'Brien, V. 1982 Viscous flow in an annulus with a sector cavity. Trans. ASME I:J. Fluids Engng 104,500–504.
(
10.1115/1.3241893
) -
Rallison, J. M. & Acrivos, A. 1978 A numerical study of the deformation and burst of a viscous drop in an extensional flow.J. Fluid Mech. 89,191–200.
(
10.1017/S0022112078002530
) -
Davis, A. M. J. & O'Neill, M. E. 1977 Separation in a slow linear shear flow past a cylinder and a plane.J. Fluid Mech. 81,551–564.
(
10.1017/S0022112077002225
) -
Pan, F. & Acrivos, A. 1967 Steady flows in rectangular cavities.J. Fluid Mech. 28,643–655.
(
10.1017/S002211206700237X
) - Carnahan, B. , Luther, H. A. & Wilkes, J. O. 1969 Applied Numerical Methods.Wiley.
-
Lighthill, M. J. 1950 Contributions to the theory of heat transfer through a laminar boundary layer.Proc. R. Soc. Lond. A202,359–377.
(
10.1098/rspa.1950.0106
) -
Youngren, G. K. & Acrivos, A. 1975 Stokes flow past a particle of arbitrary shape: a numerical method of solution.J. Fluid Mech. 69,377–403.
(
10.1017/S0022112075001486
) -
Higdon, J. J. L. 1979b The hydrodynamics of flagellar propulsion: helical waves.J. Fluid Mech. 94,331–351.
(
10.1017/S0022112079001051
) - Lorentz, H. A. 1896 Amsterdam, Zittingsverlag Akad. v. Wet. 5,168.
-
Sanders, J. , O'Brien, V. & Joseph, D. D. 1980 Stokes flow in a driven sector by two different methods. Trans. ASME E:J. Appl. Mech. 47,482–484.
(
10.1115/1.3153717
) -
O'Neill, M. E. 1977 On the separation of a slow linear shear flow from a cylindrical ridge or trough in a plane.Z. angew. Math. Phys. 28,439–448.
(
10.1007/BF01601625
) -
Acrivos, A. 1960 Solution of the laminar boundary layer energy equation at high Prandtl numbers.Phys. Fluids 3,657–658.
(
10.1063/1.1706102
) -
Hinch, E. J. 1972 Note on the symmetries of certain matersial tensors for a particle in Stokes flow.J. Fluid Mech. 54,423–425.
(
10.1017/S0022112072000771
) -
Jackson, N. & Finlayson, B. A. 1982 Calculation of the hole pressure. I. Newtonian fluids.J. Non-Newtonian Fluid Mech. 10,55–69.
(
10.1016/0377-0257(82)85004-0
) -
Moffatt, H. K. 1964 Viscous and resistive eddies near a sharp corner.J. Fluid Mech. 18,1–18.
(
10.1017/S0022112064000015
) -
Mikhlin, S. G. 1957 Integral Equations.Macmillan.
(
10.1016/B978-1-4832-1284-5.50009-7
) -
Wakiya, S. 1978 Application of bipolar coordinates to the two dimensional creeping motion of a liquid. III. Separation in Stokes flow.J. Phys. Soc. Japan 45,1756–1763.
(
10.1143/JPSJ.45.1756
)
Dates
Type | When |
---|---|
Created | 19 years, 4 months ago (April 20, 2006, 8 a.m.) |
Deposited | 2 months, 1 week ago (June 21, 2025, 12:30 a.m.) |
Indexed | 3 weeks ago (Aug. 6, 2025, 9:06 a.m.) |
Issued | 39 years, 10 months ago (Oct. 1, 1985) |
Published | 39 years, 10 months ago (Oct. 1, 1985) |
Published Online | 19 years, 4 months ago (April 20, 2006) |
Published Print | 39 years, 10 months ago (Oct. 1, 1985) |
@article{Higdon_1985, title={Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities}, volume={159}, ISSN={1469-7645}, url={http://dx.doi.org/10.1017/s0022112085003172}, DOI={10.1017/s0022112085003172}, journal={Journal of Fluid Mechanics}, publisher={Cambridge University Press (CUP)}, author={Higdon, Jonathan J. L.}, year={1985}, month=oct, pages={195–226} }