Crossref journal-article
Cambridge University Press (CUP)
Journal of Fluid Mechanics (56)
Abstract

The stress tensor in a granular shear flow is calculated by supposing that binary collisions between the particles comprising the granular mass are responsible for most of the momentum transport. We assume that the particles are smooth, hard, elastic spheres and express the stress as an integral containing probability distribution functions for the velocities of the particles and for their spatial arrangement. By assuming that the single-particle velocity distribution function is Maxwellian and that the spatial pair distribution function is given by a formula due to Carnahan & Starling, we reduce this integral to one depending upon a single non-dimensional parameter R: the ratio of the characteristic mean shear velocity to the root mean square of the precollisional particle-velocity perturbation. The integral is evaluated asymptotically for R [Gt ] 1 and R [Lt ] 1 and numerically for intermediate values. Good agreement is found between the stresses measured in experiments on dry granular materials and the theoretical predictions when R is given the value 1·7. This case is probably the one for which the present analysis is most appropriate. For moderate and large values of R, the theory predicts both shear and normal stresses that are proportional to the square of the particle diameter and the square of the shear rate, and depend strongly on the solids volume fraction. A provisional comparison is made between the stresses predicted in the limit R → ∞ and the experimental results of Bagnold for shear flow of neutrally buoyant wax spheres suspended in water. The predicted stresses are of the correct order of magnitude and yield the proper variation of stress with concentration. When R [Lt ] 1, the shear stress is linear in the shear rate, and the analysis can be applied to shear flow in a fluidized bed, although such an application is not developed further here.

Bibliography

Savage, S. B., & Jeffrey, D. J. (1981). The stress tensor in a granular flow at high shear rates. Journal of Fluid Mechanics, 110, 255–272.

Authors 2
  1. S. B. Savage (first)
  2. D. J. Jeffrey (additional)
References 37 Referenced 385
  1. Savage, S. B. & Sayed, M. 1980 Experiments on dry cohensionless materials in an annular shear cell at high strain rates. Presented at EUROMECH 133 –Statics and Dynamics of Granular Materials. Oxford University .
  2. Lebowitz, J. L. 1964 Exact solution of generalized Percus — Yevick equation for a mixture of hard spheres.Phys. Rev. A 133,895–899.
  3. Carnahan, N. F. & Starling, K. E. 1969 Equations of state for non-attracting rigid spheres.J. Chem. Phys. 51,635–636.
  4. Bagnold, R. A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.Proc. Roy. Soc. A 225,49–63.
  5. Baxter, R. J. 1971 Distribution functions. Physical Chemistry, An Advanced Treatise. Vol. VIII A. Liquid State (ed. D. Henderson ).Academic.
  6. Carlos, C. R. & Richardson, J. F. 1968 Solids movement in liquid fluidized beds. I. Particle velocity distribution.Chem. Engng Sci. 23,813–824.
  7. Kanatani, K. 1979 A micropolar continuum theory for the flow of granular materials.Int. J. Engng Sci. 17,419–432.
  8. Wertheim, M. S. 1963 Exact solution of the Percus — Yevick integral equation for hard spheres.Phys. Rev. Lett. 10,321–323.
  9. Wood, W. W. 1968 Monte Carlo studies of simple liquid models. Physics of Simple Liquids (ed. H. N. V. Temperley , J. S. Rowlinson & G. S. Rushbrooke ).North Holland.
  10. Baxter, R. J. 1968 Percus — Yevick equation for hard spheres with surface adhesion.J. Chem. Phys. 49,2770–2774.
  11. Green, H. S. 1969 The Molecular Theory of Fluids .Dover.
  12. Jenkins, J. T. & Cowin, S. C. 1979 Theories for flowing granular materials. Mechanics Applied to the Transport of Bulk Materials . A.S.M.E. AMD-31 (ed. S. C. Cowin ).
  13. Born, M. & Green, H. S. 1947 A general kinetic theory of liquids. III. Dynamical properties.Proc. Roy. Soc. A 190,455–474.
  14. Alder, B. J. & Hoover, W. G. 1968 Numerical statistical mechanics. In Physics of Simple Liquids (ed. H. N. V. Temperley , J. S. Rowlinson & G. S. Rushbrooke ).North Holland.
  15. Savage, S. B. 1979 Gravity flow of cohesionless granular materials in chutes and channels.J. Fluid Mech. 92,53–96.
  16. Jeffrey, D. J. & Acrivos, A. 1976 The rheological properties of suspensions of rigid particles.Am. Inst. Chem. Engng J. 22,417–432.
  17. Kirkwood, J. G. , Buff, F. P. & Green, M. S. 1949 The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids.J. Chem. Phys. 17,988–994.
  18. Batchelor, G. K. 1976 Developments in microhydrodynamics. In Theoretical and Applied Mechanics (ed. W. T. Koiter ). Proc. IUTAM Congress, Delft,North Holland.
  19. Mctigue, D. F. 1978 A model for stresses in shear flow of granular material. Proc. U.S.–Japan Seminar on Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials ,pp.266–271.Tokyo:Gakujutsu Bunken Fukyu-kai.
  20. Cheng, D. C.-H. & Richmond, R. A. 1978 Some observations on the rheological behaviour of dense suspensions.Rheol. Acta 17,446–453.
  21. Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-Uniform Gases ,3rd edn. Cambridge University Press.
  22. Sohofield, A. N. & Wroth, C. P. 1968 Critical State Soil Mechanics .McGraw-Hill.
  23. Mansoori, G. A. , Carnahan, N. F. , Starling, K. E. & Leland, T. W. 1971 Equilibrium thermodynamic properties of the mixture of hard spheres.J. Chem. Phys. 54,1523–1525.
  24. Marble, F. E. 1964 Mechanism of particle collision in the one-dimenstional dynamics of gasparticle mixtures.Phys. Fluids 7,1270–1282.
  25. Soo, S. L. 1967 Fluid Dynamics of Multiphase Systems .Blaisdell.
  26. Reed, T. H. & Gubbins, K. E. 1973 Applied Statistical Mechanics .McGraw-Hill.
  27. Ziman, J. M. 1979 Models of Disorder .Cambridge University Press.
  28. Goldsmith, H. L. & Mason, S. G. 1967 Microrheology of dispersions. Rheology: Theory and Applications , vol. 4 (ed. F. R. Eirich ).Academic. (10.1016/B978-1-4832-2941-6.50008-8)
  29. Temperley, H. N. V. , Rowlinson, J. S. & Rushbrooke, G. S. 1968 Physics of Simple Liquids .North Holland.
  30. Faber, T. E. 1972 An Introduction to the Theory of Liquid Metals .Cambridge University Press.
  31. Gadala-Maria, F. 1979 The rheology of concentrated suspensions. Ph.D. dissertation,Stanford University.
  32. Henderson, D. 1971 Physical Chemistry, An Advanced Treatise , vol. 8A, Liquid State. Academic.
  33. Hansen, J. P. & McDonald, I. R. 1976 Theory of Simple Liquids .Academic.
  34. Thiele, E. J. 1963 Equation of state for hard spheres.J. Chem. Phys. 39,474–479.
  35. Ree, F. H. 1971 Computer calculations for model systems. Physical Chemistry, An Advanced Treatise, vol. 8 A, Liquid State (ed. D. Henderson ).Academic. (10.1016/B978-0-12-245608-4.50010-7)
  36. Croxton, C. A. 1974 Liquid State Physics .Cambridge University Press.
  37. Mctigue, D. F. 1979 A nonlinear continuum model for flowing granular materials. Ph.D. dissertation,Stanford University.
Dates
Type When
Created 19 years, 4 months ago (April 20, 2006, 1:04 a.m.)
Deposited 6 years, 2 months ago (June 7, 2019, 11:56 a.m.)
Indexed 2 weeks, 3 days ago (Aug. 6, 2025, 8:17 a.m.)
Issued 43 years, 11 months ago (Sept. 1, 1981)
Published 43 years, 11 months ago (Sept. 1, 1981)
Published Online 19 years, 4 months ago (April 20, 2006)
Published Print 43 years, 11 months ago (Sept. 1, 1981)
Funders 0

None

@article{Savage_1981, title={The stress tensor in a granular flow at high shear rates}, volume={110}, ISSN={1469-7645}, url={http://dx.doi.org/10.1017/s0022112081000736}, DOI={10.1017/s0022112081000736}, journal={Journal of Fluid Mechanics}, publisher={Cambridge University Press (CUP)}, author={Savage, S. B. and Jeffrey, D. J.}, year={1981}, month=sep, pages={255–272} }