Crossref journal-article
Cambridge University Press (CUP)
Journal of Fluid Mechanics (56)
Abstract

The equations for the viscous flow between two coaxial infinite disks, one stationary and the other rotating, are solved numerically. The effects of applying a uniform suction through the rotating disk are determined. Initially, the fluid and disks are at rest. The angular velocity of one disk and the amount of suction through it are gradually increased to specific values and then held constant. At large Reynolds numbersR, the equilibrium flow approaches an asymptotic state in which thin boundary layers exist near both disks and an interior core rotates with nearly constant angular velocity. We present graphs of the equilibrium flow functions forR= 104and various values of the suction parametera(0 ≤a≤ 2). Whena= 0, the core rotation rate ωcis 0·3131 times that of the disk. Fluid near the rotating disk is thrown centrifugally outwards. Asaincreases, ωcincreases and the centrifugal outflow decreases. Whena> 1·3494, the core rotation rate exceeds that of the disk and the radial flow near the rotating disk is directed inwards. We also present accurate tabular results for two flows of special interest: (i) the flow between a stationary and a rotating disk with no suction (a= 0) and (ii) Bödewadt flow. The latter can be obtained by suitable scaling of the boundary-layer solution near the stationary disk for anya≥ 0. Since several solutions to the steady-state equations of motion have been reported, the question arises as to whether other solutions to the time-dependent equations of motion with zero initial conditions can be found. We exhibit a rotational start-up scheme which leads to an equilibrium solution in which the interior fluid rotates in a direction opposite to that of the disk.

Bibliography

Wilson, L. O., & Schryer, N. L. (1978). Flow between a stationary and a rotating disk with suction. Journal of Fluid Mechanics, 85(3), 479–496.

Authors 2
  1. Lynn O. Wilson (first)
  2. N. L. Schryer (additional)
References 35 Referenced 53
  1. Bodonyi, R. J. 1975 On rotationally symmetric flow above an infinite rotating disk.J. Fluid Mech. 67,657. (10.1017/S0022112075000535)
  2. Boor, C. De 1968 On uniform approximation by splines.J. Approx. Th. 1,219. (10.1016/0021-9045(68)90026-9)
  3. Ockendon, H. 1972 An asymptotic solution for steady flow above an infinite rotating disk with suction.Quart. J. Mech. Appl. Math. 25,291. (10.1093/qjmam/25.3.291)
  4. Watts, A. M. 1974 On the von Kármán equations for axi-symmetric flow.Univ. Queensland Appl. Math. Preprint no. 74.
  5. Greenspan, D. 1972 Numerical studies of flow between rotating coaxial disks.J. Inst. Math. Appl. 9,370. (10.1093/imamat/9.3.370)
  6. Tam, K. K. 1969 A note on the asymptotic solution of the flow between two oppositely rotating infinite plane disks.SIAM J. Appl. Math. 17,1305. (10.1137/0117122)
  7. Benton, E. R. 1968 A composite Ekman boundary layer problem.Tellus 20,667. (10.3402/tellusa.v20i4.10047)
  8. Stuart, J. T. 1954 On the effects of uniform suction on the steady flow due to a rotating disk.Quart. J. Mech. Appl. Math. 7,446. (10.1093/qjmam/7.4.446)
  9. Reshotko, E. & Rosenthal, R. L. 1971 Laminar flow between two infinite disks, one rotating and the other stationary.Israel J. Tech. 9,93.
  10. Fox, P. A. , Hall, A. D. & Schryer, N. L. 1976 PORT Math. Subroutine Lib., Bell Lab. Comp. Sci. Tech. Rep. no. 47. Bell Lab., Comp. Inf. Service, Murray Hill, NJ 07974.
  11. Hastings, S. P. 1970 An existence theorem for some problems from boundary layer theory.Arch. Rat. Mech. Anal. 38,308. (10.1007/BF00281527)
  12. Mellor, G. L. , Chapple, P. J. & Stokes, V. K. 1968 On the flow between a rotating and a stationary disk.J. Fluid Mech. 31,95. (10.1017/S0022112068000054)
  13. Bödewadt, U. T. 1940 Die Drehströmung über feste Grunde.Z. angew. Math. Mech. 20,241.
  14. Mcleod, J. B. & Parter, S. V. 1977 The non-monotonicity of solutions in swirling flow.Proc. Roy. Soc. Edin. A76, 161. (10.1017/S0308210500019533)
  15. Rogers, M. H. & Lance, G. N. 1960 The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disk.J. Fluid Mech. 7,617. (10.1017/S0022112060000335)
  16. Schryer, N. L. 1976 Numerical solution of time-varying partial differential equations in one space variable.Bell Lab. Comp. Sci. Tech. Rep. no. 53. Bell Lab., Comp. Inf. Service, Murray Hill, NJ 07974.
  17. Greenspan, H. P. 1968 The Theory of Rotating Fluids , chap. 3.Cambridge University Press.
  18. Evans, D. J. 1969 The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disc with uniform suction.Quart. J. Mech. Appl. Math. 22,467. (10.1093/qjmam/22.4.467)
  19. Matkowsky, B. J. & Siegmann, W. L. 1976 The flow between counter-rotating disks at high Reynolds numbers.SIAM J. Appl. Math. 30,720. (10.1137/0130064)
  20. Nguyen, N. D. , Ribault, J. P. & Florent, P. 1975 Multiple solutions for flow between coaxial disks.J. Fluid Mech. 68,369. (10.1017/S0022112075000869)
  21. Cochran, W. G. 1934 The flow due to a rotating disc.Proc. Camb. Phil. Soc. 30,365. (10.1017/S0305004100012561)
  22. Mcleod, J. B. & Parter, S. V. 1974 On the flow between two counter-rotating infinite plane disks.Arch. Rat. Mech. Anal. 54,301. (10.1007/BF00249193)
  23. Lance, G. N. & Rogers, M. H. 1962 The axially symmetric flow of a viscous fluid between two infinite rotating disks.Proc. Roy. Soc. A266, 109.
  24. Elcrat, A. R. 1975 On the swirling flow between rotating coaxial disks.J. Diff. Eqn 18,423. (10.1016/0022-0396(75)90072-8)
  25. Stewartson, K. 1953 On the flow between two rotating coaxial discs.Proc. Camb. Phil. Soc. 3,333. (10.1017/S0305004100028437)
  26. Schultz, D. & Greenspan, D. 1974 Simplification and improvement of a numerical method for Navier-Stokes problems.Univ. Wisconsin comp. Sci. Tech. Rep. no. 211.
  27. Benton, E. R. 1966 On the flow due to a rotating disk.J. Fluid Mech. 24,781. (10.1017/S0022112066001009)
  28. Roberts, S. M. & Shipman, J. S. 1976 Computation of the flow between a rotating and a stationary disk.J. Fluid Mech. 73,53. (10.1017/S0022112076001249)
  29. Pearson, C. E. 1965 Numerical solutions for the time-dependent viscous flow between two rotating coaxial disks.J. Fluid Mech. 21,623. (10.1017/S002211206500037X)
  30. Elcrat, A. R. 1976 On the radial flow of a viscous fluid between porous disks.Arch. Rat. Mech. Anal. 61,91. (10.1007/BF00251865)
  31. KÁrmÁn, T. Von 1921 Über laminare und turbulente Reibung.Z. angew. Math. Mech. 1,233 (10.1002/zamm.19210010401)
  32. Schlichting, H. 1968 Boundary Layer Theory , 6th edn,p.216.McGraw-Hill.
  33. Kuiken, H. K. 1971 The effect of normal blowing on the flow near a rotating disk of infinite extent.J. Fluid Mech. 47,789. (10.1017/S002211207100137X)
  34. Batchelor, G. K. 1951 Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow.Quart. J. Mech. Appl. Math. 4,29. (10.1093/qjmam/4.1.29)
  35. Cooper, P. & Reshotko, E. 1975 Turbulent flow between a rotating disk and a parallel wall.A.I.A.A.J. 13,573. (10.2514/3.49767)
Dates
Type When
Created 19 years, 4 months ago (April 12, 2006, 9:21 a.m.)
Deposited 6 years, 4 months ago (April 17, 2019, 8:49 p.m.)
Indexed 2 months, 1 week ago (June 21, 2025, 12:10 a.m.)
Issued 47 years, 4 months ago (April 13, 1978)
Published 47 years, 4 months ago (April 13, 1978)
Published Online 19 years, 4 months ago (April 12, 2006)
Published Print 47 years, 4 months ago (April 13, 1978)
Funders 0

None

@article{Wilson_1978, title={Flow between a stationary and a rotating disk with suction}, volume={85}, ISSN={1469-7645}, url={http://dx.doi.org/10.1017/s0022112078000750}, DOI={10.1017/s0022112078000750}, number={3}, journal={Journal of Fluid Mechanics}, publisher={Cambridge University Press (CUP)}, author={Wilson, Lynn O. and Schryer, N. L.}, year={1978}, month=apr, pages={479–496} }