Crossref journal-article
Cambridge University Press (CUP)
Journal of Fluid Mechanics (56)
Abstract

The density distribution in the relaxation regions of shock waves in carbon dioxide were determined in the Mach number range 1·4 to 4·0 using an interferometer. The over-all density ratios were found to agree with the theoretical final equilibrium values. Detailed analysis of the relaxation regions showed that the simple relaxation equation is inadequate, the relaxation frequency depending on departures from equilibrium as well as on temperature.

Bibliography

Johannesen, N. H., Zienkiewicz, H. K., Blythe, P. A., & Gerrard, J. H. (1962). Experimental and theoretical analysis of vibrational relaxation regions in carbon dioxide. Journal of Fluid Mechanics, 13(2), 213–224.

Authors 4
  1. N. H. Johannesen (first)
  2. H. K. Zienkiewicz (additional)
  3. P. A. Blythe (additional)
  4. J. H. Gerrard (additional)
References 12 Referenced 44
  1. Witteman, W. J. 1961a Instrument for measuring density profiles behind shock waves.Rev. Sci. Instrum. 32,292. (10.1063/1.1717347)
  2. Witteman, W. J. 1961b Vibrational relaxation in carbon dioxide.J. Chem. Phys. 35,1. (10.1063/1.1731873)
  3. Landolt, H. H. & Börnstein, R. 1935 Physikalisch-Chemische Tabellen ,5 ed. Table 178.Berlin:Springer.
  4. Greene, E. F. & Toennis, J. P. 1959 Chemische Reaktionen in Stosswellen .Darmstadt:Steinkoff Verlag. (10.1007/978-3-642-45794-4)
  5. Greenspan, W. D. & Blackman, V. H. 1957 Approach to thermal equilibrium behind strong shock waves in carbon dioxide and carbon monoxide.Bull. Amer. Phys. Soc. 2,217.
  6. Smiley, E. F. & Winkler, E. H. 1954 Shock tube measurements of vibrational relaxation.J. Chem. Phys,22,2018. (10.1063/1.1739984)
  7. Blythe, P. A. 1961 Comparison of exact and approximate methods for analysing vibrational relaxation regions.J. Fluid Mech. 10,33. (10.1017/S0022112061000044)
  8. Schwartz, R. N. 1954 The equations governing vibrational relaxation phenomena in carbon dioxide gas.NAVORD Rep. No. 3701.
  9. Johannesen, N. H. 1961 Analysis of vibrational relaxation regions by means of the Rayleigh line method.J. Fluid Mech. 10,25. (10.1017/S0022112061000032)
  10. Blackman, V. H. 1956 Vibrational relaxation in oxygen and nitrogen.J. Fluid Mech. 1,61. (10.1017/S0022112056000056)
  11. Herzfeld, K. F. & Litovitz, T. A. 1959 Absorption and Dispersion of Ultrasonic Waves .New York:Academic Press. (10.1149/1.2427245)
  12. Griffith, W. , Brickl, D. & Blackman, V. H. 1956 Structure of shock waves in polyatomic gases.Phys. Rev. 102,1209. (10.1103/PhysRev.102.1209)
Dates
Type When
Created 19 years, 5 months ago (March 28, 2006, 6:02 a.m.)
Deposited 2 months, 2 weeks ago (June 20, 2025, 5:53 p.m.)
Indexed 2 months, 2 weeks ago (June 21, 2025, 12:07 a.m.)
Issued 63 years, 3 months ago (June 1, 1962)
Published 63 years, 3 months ago (June 1, 1962)
Published Online 19 years, 5 months ago (March 28, 2006)
Published Print 63 years, 3 months ago (June 1, 1962)
Funders 0

None

@article{Johannesen_1962, title={Experimental and theoretical analysis of vibrational relaxation regions in carbon dioxide}, volume={13}, ISSN={1469-7645}, url={http://dx.doi.org/10.1017/s0022112062000634}, DOI={10.1017/s0022112062000634}, number={2}, journal={Journal of Fluid Mechanics}, publisher={Cambridge University Press (CUP)}, author={Johannesen, N. H. and Zienkiewicz, H. K. and Blythe, P. A. and Gerrard, J. H.}, year={1962}, month=jun, pages={213–224} }