Crossref journal-article
Elsevier BV
Virology (78)
Bibliography

Ward, B. M. (2011). The taking of the cytoskeleton one two three: How viruses utilize the cytoskeleton during egress. Virology, 411(2), 244–250.

Authors 1
  1. Brian M. Ward (first)
References 74 Referenced 30
  1. 10.1016/j.ceb.2010.04.008 / Curr. Opin. Cell Biol. / Linking molecular motors to membrane cargo by Akhmanova (2010)
  2. 10.1073/pnas.0711531105 / Proc. Natl Acad. Sci. USA / Myosin V and Kinesin act as tethers to enhance each others' processivity by Ali (2008)
  3. 10.1128/JVI.01441-06 / J. Virol. / Two modes of herpesvirus trafficking in neurons: membrane acquisition directs motion by Antinone (2006)
  4. 10.1128/JVI.01296-10 / J. Virol. / Resolving the assembly state of herpes simplex virus during axon transport by live-cell imaging by Antinone (2010)
  5. 10.1016/j.chom.2007.04.006 / Cell Host Microbe / The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin by Arakawa (2007)
  6. 10.1016/j.chom.2007.04.007 / Cell Host Microbe / F11L-mediated inhibition of RhoA-mDia signaling stimulates microtubule dynamics during vaccinia virus infection by Arakawa (2007)
  7. 10.1111/j.1600-0854.2006.00517.x / Traffic / Dynactin enhances the processivity of kinesin-2 by Berezuk (2007)
  8. 10.1146/annurev.biophys.093008.131207 / Annu. Rev. Biophys. / Actin dynamics: from nanoscale to microscale by Carlsson (2010)
  9. 10.1099/vir.0.19271-0 / J. Gen. Virol. / Vaccinia virus cores are transported on microtubules by Carter (2003)
  10. 10.1371/journal.pone.0010994 / PLoS ONE / Trafficking of Sendai virus nucleocapsids is mediated by intracellular vesicles by Chambers (2010)
  11. 10.1371/journal.pone.0008506 / PLoS ONE / F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection by Cordeiro (2009)
  12. 10.1128/JVI.00211-06 / J. Virol. / Visualization of intracellular transport of vesicular stomatitis virus nucleocapsids in living cells by Das (2006)
  13. 10.1002/(SICI)1097-0029(19991015)47:2<93::AID-JEMT2>3.0.CO;2-P / Microsc. Res. Tech. / Vesicle transport: the role of actin filaments and myosin motors by DePina (1999)
  14. 10.1128/JVI.76.7.3282-3291.2002 / J. Virol. / Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain by Diefenbach (2002)
  15. 10.1002/rmv.560 / Rev. Med. Virol. / Transport and egress of herpes simplex virus in neurons by Diefenbach (2008)
  16. 10.1016/j.cell.2006.02.018 / Cell / A superhighway to virus infection by Greber (2006)
  17. 10.1073/pnas.0601617103 / Proc. Natl Acad. Sci. USA / Rabs and their effectors: achieving specificity in membrane traffic by Grosshans (2006)
  18. 10.1099/vir.0.81260-0 / J. Gen. Virol. / Vaccinia virus intracellular enveloped virions move to the cell periphery on microtubules in the absence of the A36R protein by Herrero-Martinez (2005)
  19. 10.1126/science.279.5350.519 / Science / Kinesin and dynein superfamily proteins and the mechanism of organelle transport by Hirokawa (1998)
  20. 10.1152/physrev.00023.2007 / Physiol. Rev. / Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics by Hirokawa (2008)
  21. 10.1038/nrm2774 / Nat. Rev. Mol. Cell Biol. / Kinesin superfamily motor proteins and intracellular transport by Hirokawa (2009)
  22. 10.1128/JVI.73.10.8503-8511.1999 / J. Virol. / Anterograde transport of herpes simplex virus proteins in axons of peripheral human fetal neurons: an immunoelectron microscopy study by Holland (1999)
  23. 10.1016/j.virol.2010.10.009 / Virology / Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus by Huang (2011)
  24. 10.1128/JVI.01395-10 / J. Virol. / Interaction of poxvirus intracellular mature virion proteins with the TPR domain of kinesin light chain in live infected cells revealed by two-photon-induced fluorescence resonance energy transfer fluorescence lifetime imaging microscopy by Jeshtadi (2010)
  25. 10.1038/nrm2804 / Nat. Rev. Mol. Cell Biol. / Regulators of the cytoplasmic dynein motor by Kardon (2009)
  26. 10.1128/JVI.00363-10 / J. Virol. / Live-cell coimaging of the genomic RNAs and Gag proteins of two lentiviruses by Kemler (2010)
  27. 10.1128/JVI.72.8.6898-6901.1998 / J. Virol. / Binding of murine leukemia virus Gag polyproteins to KIF4, a microtubule-based motor protein by Kim (1998)
  28. 10.1099/vir.0.80633-0 / J. Gen. Virol. / Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A by Koshizuka (2005)
  29. 10.1128/JVI.80.9.4264-4275.2006 / J. Virol. / Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro by Lee (2006)
  30. 10.1128/JVI.01718-08 / J. Virol. / Herpesvirus interactions with the host cytoskeleton by Lyman (2009)
  31. 10.1091/mbc.12.12.3875 / Mol. Biol. Cell / Microtubule-dependent organization of vaccinia virus core-derived early mRNAs into distinct cytoplasmic structures by Mallardo (2001)
  32. 10.1128/JVI.00819-08 / J. Virol. / Kinesin KIF4 regulates intracellular trafficking and stability of the human immunodeficiency virus type 1 Gag polyprotein by Martinez (2008)
  33. 10.1128/JVI.01433-09 / J. Virol. / Hemagglutinin-pseudotyped green fluorescent protein-expressing influenza viruses for the detection of influenza virus neutralizing antibodies by Martinez-Sobrido (2010)
  34. 10.1083/jcb.200203150 / J. Cell Biol. / Visualization of the intracellular behavior of HIV in living cells by McDonald (2002)
  35. 10.1016/j.virusres.2009.03.018 / Virus Res. / Herpesvirus assembly: an update by Mettenleiter (2009)
  36. 10.1073/pnas.111145398 / Proc. Natl Acad. Sci. USA / All kinesin superfamily protein, KIF, genes in mouse and human by Miki (2001)
  37. 10.1128/JVI.74.4.1827-1839.2000 / J. Virol. / Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons by Miranda-Saksena (2000)
  38. 10.1371/journal.ppat.1000785 / PLoS Pathog. / Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export by Morgan (2010)
  39. {'key': '10.1016/j.virol.2010.12.024_bb0195', 'series-title': 'Fields Virology', 'first-page': '2849', 'article-title': 'Poxviridae: The viruses and their replication', 'author': 'Moss', 'year': '2001'} / Fields Virology / Poxviridae: The viruses and their replication by Moss (2001)
  40. 10.1038/ncb1101-e245 / Nat. Cell Biol. / High-speed mass transit for poxviruses on microtubules by Moss (2001)
  41. 10.1128/JVI.01784-10 / J. Virol. / Ultrastructural analysis of virion formation and intraaxonal transport of herpes simplex virus type 1 in primary rat neurons by Negatsch (2010)
  42. 10.1038/nrm2890 / Nat. Rev. Mol. Cell Biol. / Linking actin dynamics and gene transcription to drive cellular motile functions by Olson (2010)
  43. 10.1006/viro.1994.1542 / Virology / Vaccinia virus gene A36R encodes a Mr 43-50K protein on the surface of extacellular enveloped virus by Parkinson (1994)
  44. 10.1111/j.1462-5822.2005.00679.x / Cell. Microbiol. / Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell by Radtke (2006)
  45. 10.1371/journal.ppat.1000991 / PLoS Pathog. / Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures by Radtke (2010)
  46. 10.1016/j.ejcb.2007.05.007 / Eur. J. Cell Biol. / Unconventional myosins in muscle by Redowicz (2007)
  47. 10.1073/pnas.0308043101 / Proc. Natl Acad. Sci. USA / A myristoyl switch regulates membrane binding of HIV-1 Gag by Resh (2004)
  48. 10.1038/ncb1101-992 / Nat. Cell Biol. / Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus by Rietdorf (2001)
  49. 10.1128/JVI.00732-10 / J. Virol. / Myosin Va enhances secretion of herpes simplex virus 1 virions and cell surface expression of viral glycoproteins by Roberts (2010)
  50. 10.1016/j.ceb.2007.11.006 / Curr. Opin. Cell Biol. / Cargo transport: molecular motors navigate a complex cytoskeleton by Ross (2008)
  51. 10.1099/0022-1317-81-1-47 / J. Gen. Virol. / The vaccinia virus A27L protein is needed for the microtubule- dependent transport of intracellular mature virus particles by Sanderson (2000)
  52. 10.1111/j.1462-5822.2007.00927.x / Cell. Microbiol. / Kinesin-1 plays multiple roles during the vaccinia virus life cycle by Schepis (2007)
  53. 10.1074/jbc.273.35.22161 / J. Biol. Chem. / Rab GTPases, directors of vesicle docking by Schimmoller (1998)
  54. 10.1128/JVI.68.1.130-147.1994 / J. Virol. / Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network by Schmelz (1994)
  55. 10.1128/JVI.01052-08 / J. Virol. / The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles by Siu (2008)
  56. 10.1016/j.ejcb.2007.05.008 / Eur. J. Cell Biol. / Subunits interactions in kinesin motors by Skowronek (2007)
  57. 10.1073/pnas.061029798 / Proc. Natl Acad. Sci. USA / Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons by Smith (2001)
  58. 10.1099/0022-1317-83-12-2915 / J. Gen. Virol. / The formation and function of extracellular enveloped vaccinia virus by Smith (2002)
  59. 10.1128/JVI.01107-06 / J. Virol. / Herpes simplex virus capsids are transported in neuronal axons without an envelope containing the viral glycoproteins by Snyder (2006)
  60. 10.1128/JVI.00520-07 / J. Virol. / A herpes simplex virus gD-YFP fusion glycoprotein is transported separately from viral capsids in neuronal axons by Snyder (2007)
  61. 10.1038/nrm2728 / Nat. Rev. Mol. Cell Biol. / Rab GTPases as coordinators of vesicle traffic by Stenmark (2009)
  62. 10.1083/jcb.144.4.657 / J. Cell Biol. / Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus by Suomalainen (1999)
  63. 10.1128/JVI.73.12.10508-10513.1999 / J. Virol. / Cellular motor protein KIF-4 associates with retroviral Gag by Tang (1999)
  64. 10.1016/j.tcb.2009.11.004 / Trends Cell Biol. / Intermediate filaments take the heat as stress proteins by Toivola (2010)
  65. {'key': '10.1016/j.virol.2010.12.024_bb0325', 'first-page': '163', 'article-title': 'Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes', 'volume': '60', 'author': 'Tooze', 'year': '1993', 'journal-title': 'Eur. J. Cell Biol.'} / Eur. J. Cell Biol. / Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes by Tooze (1993)
  66. 10.1016/S0092-8674(03)00111-9 / Cell / The molecular motor toolbox for intracellular transport by Vale (2003)
  67. 10.1006/viro.2000.0260 / Virology / The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles by van Eijl (2000)
  68. 10.1111/j.1462-5822.2005.00614.x / Cell. Microbiol. / The longest micron; transporting poxviruses out of the cell by Ward (2005)
  69. 10.1128/JVI.79.8.4755-4763.2005 / J. Virol. / Visualization and characterization of the intracellular movement of vaccinia virus intracellular mature virions by Ward (2005)
  70. 10.1128/JVI.75.23.11651-11663.2001 / J. Virol. / Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails by Ward (2001)
  71. 10.1128/JVI.78.5.2486-2493.2004 / J. Virol. / Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin by Ward (2004)
  72. 10.1128/JVI.77.7.4113-4126.2003 / J. Virol. / Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins by Ward (2003)
  73. 10.1016/j.cub.2004.06.045 / Curr. Biol. / Bidirectional transport along microtubules by Welte (2004)
  74. 10.1111/j.1600-0854.2005.00379.x / Traffic / The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro by Wolfstein (2006)
Dates
Type When
Created 14 years, 7 months ago (Jan. 18, 2011, 4:13 a.m.)
Deposited 5 years, 2 months ago (June 15, 2020, 3:03 p.m.)
Indexed 5 months ago (March 29, 2025, 4:12 p.m.)
Issued 14 years, 6 months ago (March 1, 2011)
Published 14 years, 6 months ago (March 1, 2011)
Published Print 14 years, 6 months ago (March 1, 2011)
Funders 0

None

@article{Ward_2011, title={The taking of the cytoskeleton one two three: How viruses utilize the cytoskeleton during egress}, volume={411}, ISSN={0042-6822}, url={http://dx.doi.org/10.1016/j.virol.2010.12.024}, DOI={10.1016/j.virol.2010.12.024}, number={2}, journal={Virology}, publisher={Elsevier BV}, author={Ward, Brian M.}, year={2011}, month=mar, pages={244–250} }