Crossref journal-article
Elsevier BV
Ultramicroscopy (78)
Bibliography

Zhang, C., Feng, J., DaCosta, L. R., & Voyles, Paul. M. (2020). Atomic resolution convergent beam electron diffraction analysis using convolutional neural networks. Ultramicroscopy, 210, 112921.

Authors 4
  1. Chenyu Zhang (first)
  2. Jie Feng (additional)
  3. Luis Rangel DaCosta (additional)
  4. Paul.M. Voyles (additional)
References 60 Referenced 34
  1. 10.1016/S0091-679X(06)79028-8 / Methods Cell Biol. / Future directions for camera systems in electron microscopy by Xuong (2007)
  2. 10.1016/j.jsb.2007.10.007 / J. Struct. Biol. / Applications of direct detection device in transmission electron microscopy by Jin (2008)
  3. 10.1038/ncomms6653 / Nat. Commun. / Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction by Müller-Caspary (2014)
  4. 10.1038/s41586-018-0298-5 / Nature / Electron ptychography of 2D materials to deep sub-ångström resolution by Jiang (2018)
  5. 10.1038/s41467-017-00150-1 / Nat. Commun. / Electron ptychographic microscopy for three-dimensional imaging by Gao (2017)
  6. 10.1016/j.ultramic.2014.10.013 / Ultramicroscopy / Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions by Yang (2015)
  7. 10.1016/j.ultramic.2014.09.013 / Ultramicroscopy / Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution by Pennycook (2015)
  8. {'key': '10.1016/j.ultramic.2019.112921_bib0008', 'article-title': 'Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy', 'author': 'Müller-Caspary', 'year': '2016', 'journal-title': 'Ultramicroscopy'} / Ultramicroscopy / Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy by Müller-Caspary (2016)
  9. 10.1063/1.4922994 / Appl. Phys. Lett. / Strain mapping at nanometer resolution using advanced nano-beam electron diffraction by Ozdol (2015)
  10. 10.1016/j.ultramic.2016.12.021 / Ultramicroscopy / Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping by Pekin (2017)
  11. 10.1021/acs.accounts.7b00123 / Acc. Chem. Res. / Direct visualization of local electromagnetic field structures by scanning transmission electron microscopy by Shibata (2017)
  12. 10.1038/srep35880 / Sci. Rep. / Jointed magnetic skyrmion lattices at a small-angle grain boundary directly visualized by advanced electron microscopy by Matsumoto (2016)
  13. 10.1016/j.ultramic.2018.09.005 / Ultramicroscopy / Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy by Im (2018)
  14. 10.1016/j.ultramic.2009.10.001 / Ultramicroscopy / Position averaged convergent beam electron diffraction: theory and applications by LeBeau (2010)
  15. 10.1063/1.3549300 / Appl. Phys. Lett. / Determining ferroelectric polarity at the nanoscale by LeBeau (2011)
  16. 10.1063/1.4714734 / Appl. Phys. Lett. / Nanoscale quantification of octahedral tilts in perovskite films by Hwang (2012)
  17. 10.1063/1.4975932 / Appl. Phys. Lett. / Non-spectroscopic composition measurements of SrTiO3–La0.7Sr0.3MnO3 multilayers using scanning convergent beam electron diffraction by Ophus (2017)
  18. 10.1016/j.ultramic.2017.05.001 / Ultramicroscopy / Accuracy and precision of thickness determination from position-averaged convergent beam electron diffraction patterns using a single-parameter metric by Pollock (2017)
  19. {'key': '10.1016/j.ultramic.2019.112921_bib0020', 'series-title': 'Adv. Neural Inf. Process. Syst.', 'article-title': 'Imagenet classification with deep convolutional neural networks', 'author': 'Krizhevsky', 'year': '2012'} / Adv. Neural Inf. Process. Syst. / Imagenet classification with deep convolutional neural networks by Krizhevsky (2012)
  20. Kim, Y. Convolutional neural networks for sentence classification. (2014). doi:10.3115/v1/D14-1181. (10.3115/v1/D14-1181)
  21. 10.1109/TMI.2016.2528162 / IEEE Trans. Med. Imaging / Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning by Shin (2016)
  22. Simonyan, K. & Zisserman, A.Very deep convolutional networks for large-scale image recognition. 1–14 (2014). doi:10.1016/j.infsof.2008.09.005. (10.1016/j.infsof.2008.09.005)
  23. 10.1016/j.ultramic.2018.03.004 / Ultramicroscopy / A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns by Xu (2018)
  24. 10.1038/srep26348 / Sci. Rep. / Big data analytics for scanning transmission electron microscopy ptychography by Jesse (2016)
  25. 10.1021/acsnano.7b07504 / ACS Nano / Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations by Ziatdinov (2017)
  26. 10.1103/PhysRevLett.120.145301 / Phys. Rev. Lett. / Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties by Xie (2018)
  27. {'key': '10.1016/j.ultramic.2019.112921_bib0028', 'first-page': '1', 'article-title': 'Automated defect analysis in electron microscopy images', 'author': 'Li', 'year': '2018', 'journal-title': 'Submitt. Rev.'} / Submitt. Rev. / Automated defect analysis in electron microscopy images by Li (2018)
  28. 10.1186/s40679-017-0048-z / Adv. Struct. Chem. Imaging / A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy by Pryor (2017)
  29. 10.1103/PhysRevLett.100.206101 / Phys. Rev. Lett. / Quantitative atomic resolution scanning transmission electron microscopy by Lebeau (2008)
  30. 10.1021/nl102025s / Nano Lett. / Standardless atom counting in scanning transmission electron microscopy by LeBeau (2010)
  31. 10.1038/ncomms5155 / Nat. Commun. / Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts by Yankovich (2014)
  32. 10.1038/ncomms12532 / Nat. Commun. / Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures by Yang (2016)
  33. 10.1016/j.ultramic.2014.08.002 / Ultramicroscopy / Ultramicroscopy Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy by McMullan (2014)
  34. 10.1016/j.ultramic.2015.11.008 / Ultramicroscopy / Characterizing the response of a scintillator-based detector to single electrons by Sang (2016)
  35. 10.1107/S205327331501757X / Acta Crystallogr. Sect. A Found. Adv. / Computation in electron microscopy by Kirkland (2016)
  36. {'key': '10.1016/j.ultramic.2019.112921_bib0037', 'first-page': '1', 'article-title': 'High dynamic range pixel array detector for scanning transmission electron microscopy', 'author': 'Tate', 'year': '2016', 'journal-title': 'Microsc. Microanal.'} / Microsc. Microanal. / High dynamic range pixel array detector for scanning transmission electron microscopy by Tate (2016)
  37. 10.1088/1748-0221/11/04/P04006 / J. Instrum. / A pnCCD-based, fast direct single electron imaging camera for TEM and STEM by Ryll (2016)
  38. 10.1017/S1431927613001402 / Microsc. Microanal. / Identifying and correcting scan noise and drift in the scanning transmission electron microscope by Jones (2013)
  39. 10.1186/s40679-015-0003-9 / Adv. Struct. Chem. Imaging / High-precision scanning transmission electron microscopy at coarse pixel sampling for reduced electron dose by Yankovich (2015)
  40. 10.1186/s40679-015-0004-8 / Adv. Struct. Chem. Imaging / Poisson noise removal from high-resolution STEM images based on periodic block matching by Mevenkamp (2015)
  41. {'key': '10.1016/j.ultramic.2019.112921_bib0042', 'series-title': '2012 IEEE Int. Conf. Acoust. Speech Signal Process.', 'first-page': '1109', 'article-title': 'Poisson noise reduction with non-local PCA', 'author': 'Salmon', 'year': '2012'} / 2012 IEEE Int. Conf. Acoust. Speech Signal Process. / Poisson noise reduction with non-local PCA by Salmon (2012)
  42. 10.1088/0957-4484/27/36/364001 / Nanotechnology / Non-rigid registration and non-local principle component analysis to improve electron microscopy spectrum images by Yankovich (2016)
  43. 10.1038/nmeth.2472 / Nat. Methods / Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM by Li (2013)
  44. {'journal-title': 'Deep Learn.', 'year': '2016', 'author': 'Goodfellow', 'key': '10.1016/j.ultramic.2019.112921_bib0045'} / Deep Learn. by Goodfellow (2016)
  45. {'journal-title': 'GitHub Repos', 'year': '2015', 'author': 'Chollet', 'key': '10.1016/j.ultramic.2019.112921_bib0046'} / GitHub Repos by Chollet (2015)
  46. {'key': '10.1016/j.ultramic.2019.112921_bib0047', 'series-title': '12th USENIX Symp. Oper. Syst. Des. Implement. (OSDI ’16)', 'first-page': '265', 'article-title': 'TensorFlow: a system for large-scale machine learning TensorFlow: a system for large-scale machine learning', 'author': 'Abadi', 'year': '2016'} / 12th USENIX Symp. Oper. Syst. Des. Implement. (OSDI ’16) / TensorFlow: a system for large-scale machine learning TensorFlow: a system for large-scale machine learning by Abadi (2016)
  47. {'key': '10.1016/j.ultramic.2019.112921_bib0048', 'series-title': 'Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 7700 LECTU', 'first-page': '437', 'article-title': 'Practical recommendations for gradient-based training of deep architectures', 'author': 'Bengio', 'year': '2012'} / Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 7700 LECTU / Practical recommendations for gradient-based training of deep architectures by Bengio (2012)
  48. Ap, G.E.G., Inima, S.H.M., Nocedal, J., Tak, P. & Tang, P.On large-batch training for deep learning: generalization gap and sharp minima. 1–16 (2017).
  49. Maeda, S. A Bayesian encourages dropout. 1–9 (2015).
  50. Zeiler, M.Adadelta: an adaptive learning rate method.
  51. Martens, J. & Hinton, G.On the importance of initialization and momentum in deep learning. (2012).
  52. {'key': '10.1016/j.ultramic.2019.112921_bib0053', 'series-title': 'Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.', 'first-page': '1717', 'article-title': 'Learning and transferring mid-level image representations using convolutional neural networks', 'author': 'Oquab', 'year': '2014'} / Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. / Learning and transferring mid-level image representations using convolutional neural networks by Oquab (2014)
  53. Home - Keras Documentation. at <https://keras.io/>.
  54. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift.
  55. {'key': '10.1016/j.ultramic.2019.112921_bib0056', 'first-page': '993', 'volume': '12', 'author': 'Hansen', 'year': '1990', 'journal-title': 'Neural Netw. Ensembles'} / Neural Netw. Ensembles by Hansen (1990)
  56. {'key': '10.1016/j.ultramic.2019.112921_bib0057', 'first-page': '396', 'author': 'Le Cun Jackel', 'year': '1990', 'journal-title': 'Adv. Neural Inf. Process. Syst.'} / Adv. Neural Inf. Process. Syst. by Le Cun Jackel (1990)
  57. 10.1016/j.ultramic.2010.01.007 / Ultramicroscopy / Measurement of effective source distribution and its importance for quantitative interpretation of STEM images by Dwyer (2010)
  58. 10.1063/1.2957648 / Appl. Phys. Lett. / Method to measure spatial coherence of subangstrom electron beams by Dwyer (2008)
  59. 10.1109/21.97458 / IEEE Trans. Syst. Man Cybern. / A survey of decision tree classifier methodology by Safavian (1991)
  60. {'key': '10.1016/j.ultramic.2019.112921_bib0061', 'series-title': 'Proc. – 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 20172017-Janua,', 'first-page': '105', 'article-title': 'Photo-realistic single image super-resolution using a generative adversarial network', 'author': 'Ledig', 'year': '2017'} / Proc. – 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 20172017-Janua, / Photo-realistic single image super-resolution using a generative adversarial network by Ledig (2017)
Dates
Type When
Created 5 years, 8 months ago (Dec. 23, 2019, 1:01 p.m.)
Deposited 4 years, 4 months ago (April 17, 2021, 11:38 a.m.)
Indexed 3 months ago (May 27, 2025, 9:27 a.m.)
Issued 5 years, 5 months ago (March 1, 2020)
Published 5 years, 5 months ago (March 1, 2020)
Published Print 5 years, 5 months ago (March 1, 2020)
Funders 2
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
  2. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE

@article{Zhang_2020, title={Atomic resolution convergent beam electron diffraction analysis using convolutional neural networks}, volume={210}, ISSN={0304-3991}, url={http://dx.doi.org/10.1016/j.ultramic.2019.112921}, DOI={10.1016/j.ultramic.2019.112921}, journal={Ultramicroscopy}, publisher={Elsevier BV}, author={Zhang, Chenyu and Feng, Jie and DaCosta, Luis Rangel and Voyles, Paul.M.}, year={2020}, month=mar, pages={112921} }