Crossref
journal-article
Elsevier BV
Ultramicroscopy (78)
References
60
Referenced
34
10.1016/S0091-679X(06)79028-8
/ Methods Cell Biol. / Future directions for camera systems in electron microscopy by Xuong (2007)10.1016/j.jsb.2007.10.007
/ J. Struct. Biol. / Applications of direct detection device in transmission electron microscopy by Jin (2008)10.1038/ncomms6653
/ Nat. Commun. / Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction by Müller-Caspary (2014)10.1038/s41586-018-0298-5
/ Nature / Electron ptychography of 2D materials to deep sub-ångström resolution by Jiang (2018)10.1038/s41467-017-00150-1
/ Nat. Commun. / Electron ptychographic microscopy for three-dimensional imaging by Gao (2017)10.1016/j.ultramic.2014.10.013
/ Ultramicroscopy / Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions by Yang (2015)10.1016/j.ultramic.2014.09.013
/ Ultramicroscopy / Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution by Pennycook (2015){'key': '10.1016/j.ultramic.2019.112921_bib0008', 'article-title': 'Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy', 'author': 'Müller-Caspary', 'year': '2016', 'journal-title': 'Ultramicroscopy'}
/ Ultramicroscopy / Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy by Müller-Caspary (2016)10.1063/1.4922994
/ Appl. Phys. Lett. / Strain mapping at nanometer resolution using advanced nano-beam electron diffraction by Ozdol (2015)10.1016/j.ultramic.2016.12.021
/ Ultramicroscopy / Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping by Pekin (2017)10.1021/acs.accounts.7b00123
/ Acc. Chem. Res. / Direct visualization of local electromagnetic field structures by scanning transmission electron microscopy by Shibata (2017)10.1038/srep35880
/ Sci. Rep. / Jointed magnetic skyrmion lattices at a small-angle grain boundary directly visualized by advanced electron microscopy by Matsumoto (2016)10.1016/j.ultramic.2018.09.005
/ Ultramicroscopy / Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy by Im (2018)10.1016/j.ultramic.2009.10.001
/ Ultramicroscopy / Position averaged convergent beam electron diffraction: theory and applications by LeBeau (2010)10.1063/1.3549300
/ Appl. Phys. Lett. / Determining ferroelectric polarity at the nanoscale by LeBeau (2011)10.1063/1.4714734
/ Appl. Phys. Lett. / Nanoscale quantification of octahedral tilts in perovskite films by Hwang (2012)10.1063/1.4975932
/ Appl. Phys. Lett. / Non-spectroscopic composition measurements of SrTiO3–La0.7Sr0.3MnO3 multilayers using scanning convergent beam electron diffraction by Ophus (2017)10.1016/j.ultramic.2017.05.001
/ Ultramicroscopy / Accuracy and precision of thickness determination from position-averaged convergent beam electron diffraction patterns using a single-parameter metric by Pollock (2017){'key': '10.1016/j.ultramic.2019.112921_bib0020', 'series-title': 'Adv. Neural Inf. Process. Syst.', 'article-title': 'Imagenet classification with deep convolutional neural networks', 'author': 'Krizhevsky', 'year': '2012'}
/ Adv. Neural Inf. Process. Syst. / Imagenet classification with deep convolutional neural networks by Krizhevsky (2012)-
Kim, Y. Convolutional neural networks for sentence classification. (2014). doi:10.3115/v1/D14-1181.
(
10.3115/v1/D14-1181
) 10.1109/TMI.2016.2528162
/ IEEE Trans. Med. Imaging / Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning by Shin (2016)-
Simonyan, K. & Zisserman, A.Very deep convolutional networks for large-scale image recognition. 1–14 (2014). doi:10.1016/j.infsof.2008.09.005.
(
10.1016/j.infsof.2008.09.005
) 10.1016/j.ultramic.2018.03.004
/ Ultramicroscopy / A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns by Xu (2018)10.1038/srep26348
/ Sci. Rep. / Big data analytics for scanning transmission electron microscopy ptychography by Jesse (2016)10.1021/acsnano.7b07504
/ ACS Nano / Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations by Ziatdinov (2017)10.1103/PhysRevLett.120.145301
/ Phys. Rev. Lett. / Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties by Xie (2018){'key': '10.1016/j.ultramic.2019.112921_bib0028', 'first-page': '1', 'article-title': 'Automated defect analysis in electron microscopy images', 'author': 'Li', 'year': '2018', 'journal-title': 'Submitt. Rev.'}
/ Submitt. Rev. / Automated defect analysis in electron microscopy images by Li (2018)10.1186/s40679-017-0048-z
/ Adv. Struct. Chem. Imaging / A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy by Pryor (2017)10.1103/PhysRevLett.100.206101
/ Phys. Rev. Lett. / Quantitative atomic resolution scanning transmission electron microscopy by Lebeau (2008)10.1021/nl102025s
/ Nano Lett. / Standardless atom counting in scanning transmission electron microscopy by LeBeau (2010)10.1038/ncomms5155
/ Nat. Commun. / Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts by Yankovich (2014)10.1038/ncomms12532
/ Nat. Commun. / Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures by Yang (2016)10.1016/j.ultramic.2014.08.002
/ Ultramicroscopy / Ultramicroscopy Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy by McMullan (2014)10.1016/j.ultramic.2015.11.008
/ Ultramicroscopy / Characterizing the response of a scintillator-based detector to single electrons by Sang (2016)10.1107/S205327331501757X
/ Acta Crystallogr. Sect. A Found. Adv. / Computation in electron microscopy by Kirkland (2016){'key': '10.1016/j.ultramic.2019.112921_bib0037', 'first-page': '1', 'article-title': 'High dynamic range pixel array detector for scanning transmission electron microscopy', 'author': 'Tate', 'year': '2016', 'journal-title': 'Microsc. Microanal.'}
/ Microsc. Microanal. / High dynamic range pixel array detector for scanning transmission electron microscopy by Tate (2016)10.1088/1748-0221/11/04/P04006
/ J. Instrum. / A pnCCD-based, fast direct single electron imaging camera for TEM and STEM by Ryll (2016)10.1017/S1431927613001402
/ Microsc. Microanal. / Identifying and correcting scan noise and drift in the scanning transmission electron microscope by Jones (2013)10.1186/s40679-015-0003-9
/ Adv. Struct. Chem. Imaging / High-precision scanning transmission electron microscopy at coarse pixel sampling for reduced electron dose by Yankovich (2015)10.1186/s40679-015-0004-8
/ Adv. Struct. Chem. Imaging / Poisson noise removal from high-resolution STEM images based on periodic block matching by Mevenkamp (2015){'key': '10.1016/j.ultramic.2019.112921_bib0042', 'series-title': '2012 IEEE Int. Conf. Acoust. Speech Signal Process.', 'first-page': '1109', 'article-title': 'Poisson noise reduction with non-local PCA', 'author': 'Salmon', 'year': '2012'}
/ 2012 IEEE Int. Conf. Acoust. Speech Signal Process. / Poisson noise reduction with non-local PCA by Salmon (2012)10.1088/0957-4484/27/36/364001
/ Nanotechnology / Non-rigid registration and non-local principle component analysis to improve electron microscopy spectrum images by Yankovich (2016)10.1038/nmeth.2472
/ Nat. Methods / Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM by Li (2013){'journal-title': 'Deep Learn.', 'year': '2016', 'author': 'Goodfellow', 'key': '10.1016/j.ultramic.2019.112921_bib0045'}
/ Deep Learn. by Goodfellow (2016){'journal-title': 'GitHub Repos', 'year': '2015', 'author': 'Chollet', 'key': '10.1016/j.ultramic.2019.112921_bib0046'}
/ GitHub Repos by Chollet (2015){'key': '10.1016/j.ultramic.2019.112921_bib0047', 'series-title': '12th USENIX Symp. Oper. Syst. Des. Implement. (OSDI ’16)', 'first-page': '265', 'article-title': 'TensorFlow: a system for large-scale machine learning TensorFlow: a system for large-scale machine learning', 'author': 'Abadi', 'year': '2016'}
/ 12th USENIX Symp. Oper. Syst. Des. Implement. (OSDI ’16) / TensorFlow: a system for large-scale machine learning TensorFlow: a system for large-scale machine learning by Abadi (2016){'key': '10.1016/j.ultramic.2019.112921_bib0048', 'series-title': 'Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 7700 LECTU', 'first-page': '437', 'article-title': 'Practical recommendations for gradient-based training of deep architectures', 'author': 'Bengio', 'year': '2012'}
/ Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 7700 LECTU / Practical recommendations for gradient-based training of deep architectures by Bengio (2012)- Ap, G.E.G., Inima, S.H.M., Nocedal, J., Tak, P. & Tang, P.On large-batch training for deep learning: generalization gap and sharp minima. 1–16 (2017).
- Maeda, S. A Bayesian encourages dropout. 1–9 (2015).
- Zeiler, M.Adadelta: an adaptive learning rate method.
- Martens, J. & Hinton, G.On the importance of initialization and momentum in deep learning. (2012).
{'key': '10.1016/j.ultramic.2019.112921_bib0053', 'series-title': 'Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.', 'first-page': '1717', 'article-title': 'Learning and transferring mid-level image representations using convolutional neural networks', 'author': 'Oquab', 'year': '2014'}
/ Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. / Learning and transferring mid-level image representations using convolutional neural networks by Oquab (2014)- Home - Keras Documentation. at <https://keras.io/>.
- Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift.
{'key': '10.1016/j.ultramic.2019.112921_bib0056', 'first-page': '993', 'volume': '12', 'author': 'Hansen', 'year': '1990', 'journal-title': 'Neural Netw. Ensembles'}
/ Neural Netw. Ensembles by Hansen (1990){'key': '10.1016/j.ultramic.2019.112921_bib0057', 'first-page': '396', 'author': 'Le Cun Jackel', 'year': '1990', 'journal-title': 'Adv. Neural Inf. Process. Syst.'}
/ Adv. Neural Inf. Process. Syst. by Le Cun Jackel (1990)10.1016/j.ultramic.2010.01.007
/ Ultramicroscopy / Measurement of effective source distribution and its importance for quantitative interpretation of STEM images by Dwyer (2010)10.1063/1.2957648
/ Appl. Phys. Lett. / Method to measure spatial coherence of subangstrom electron beams by Dwyer (2008)10.1109/21.97458
/ IEEE Trans. Syst. Man Cybern. / A survey of decision tree classifier methodology by Safavian (1991){'key': '10.1016/j.ultramic.2019.112921_bib0061', 'series-title': 'Proc. – 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 20172017-Janua,', 'first-page': '105', 'article-title': 'Photo-realistic single image super-resolution using a generative adversarial network', 'author': 'Ledig', 'year': '2017'}
/ Proc. – 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 20172017-Janua, / Photo-realistic single image super-resolution using a generative adversarial network by Ledig (2017)
Dates
Type | When |
---|---|
Created | 5 years, 8 months ago (Dec. 23, 2019, 1:01 p.m.) |
Deposited | 4 years, 4 months ago (April 17, 2021, 11:38 a.m.) |
Indexed | 3 months ago (May 27, 2025, 9:27 a.m.) |
Issued | 5 years, 5 months ago (March 1, 2020) |
Published | 5 years, 5 months ago (March 1, 2020) |
Published Print | 5 years, 5 months ago (March 1, 2020) |
Funders
2
National Science Foundation
10.13039/100000001
Region: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
U.S. Department of Energy
10.13039/100000015
Region: Americas
gov (National government)
Labels
8
- Energy Department
- Department of Energy
- United States Department of Energy
- ENERGY.GOV
- US Department of Energy
- USDOE
- DOE
- USADOE
@article{Zhang_2020, title={Atomic resolution convergent beam electron diffraction analysis using convolutional neural networks}, volume={210}, ISSN={0304-3991}, url={http://dx.doi.org/10.1016/j.ultramic.2019.112921}, DOI={10.1016/j.ultramic.2019.112921}, journal={Ultramicroscopy}, publisher={Elsevier BV}, author={Zhang, Chenyu and Feng, Jie and DaCosta, Luis Rangel and Voyles, Paul.M.}, year={2020}, month=mar, pages={112921} }