Crossref
journal-article
Elsevier BV
Trends in Biochemical Sciences (78)
References
86
Referenced
84
10.1091/mbc.E05-08-0771
/ Mol. Biol. Cell / De novo kinetochore assembly requires the centromeric histone H3 variant by Collins (2005)10.1128/MCB.5.1.173
/ Mol. Cell. Biol. / Kinetochore components recognized by human autoantibodies are present on mononucleosomes by Palmer (1985){'key': '10.1016/j.tibs.2006.10.004_bib3', 'first-page': '13', 'article-title': 'Human anti-centromere sera recognise a 19.5kD non-histone chromosomal protein from HeLa cells', 'volume': '58', 'author': 'Guldner', 'year': '1984', 'journal-title': 'Clin. Exp. Immunol.'}
/ Clin. Exp. Immunol. / Human anti-centromere sera recognise a 19.5kD non-histone chromosomal protein from HeLa cells by Guldner (1984)10.1007/BF00328227
/ Chromosoma / Identification of a family of human centromere proteins using autoimmune sera from patients with schleroderma by Earnshaw (1985)10.1083/jcb.104.4.805
/ J. Cell Biol. / A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones by Palmer (1987)10.1073/pnas.88.9.3734
/ Proc. Natl. Acad. Sci. U. S. A. / Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone by Palmer (1991)10.1101/gad.1144403
/ Genes Dev. / Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes by De Wulf (2003)10.1083/jcb.200210005
/ J. Cell Biol. / Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway by Goshima (2003)10.1016/j.tcb.2004.05.009
/ Trends Cell Biol. / Building the centromere: from foundation proteins to 3D organization by Amor (2004)10.1083/jcb.200509158
/ J. Cell Biol. / The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation by Kline (2006)10.1038/ncb1396
/ Nat. Cell Biol. / The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres by Okada (2006)10.1091/mbc.E05-03-0239
/ Mol. Biol. Cell / Measuring the stoichiometry and physical interactions between components elucidates the architecture of the vertebrate kinetochore by Emanuele (2005)10.1186/gb-2006-7-3-r23
/ Genome Biol. / Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins by Meraldi (2006)10.1016/S0955-0674(03)00043-7
/ Curr. Opin. Cell Biol. / Maintenance of chromatin states: an open-and-shut case by Vermaak (2003)10.1038/nature02766
/ Nature / Structural determinants for generating centromeric chromatin by Black (2004)10.1242/jcs.114.19.3529
/ J. Cell Sci. / Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A by Van Hooser (2001)10.1128/MCB.24.15.6620-6630.2004
/ Mol. Cell. Biol. / Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae by Wieland (2004)10.1038/nsb996
/ Nat. Struct. Biol. / Phylogenomics of the nucleosome by Malik (2003)10.1186/jbiol11
/ J. Biol. / Adaptive evolution of centromere proteins in plants and animals by Talbert (2004)10.1126/science.1062939
/ Science / The centromere paradox: stable inheritance with rapidly evolving DNA by Henikoff (2001)10.1101/gr.593403
/ Genome Res. / Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains by Hall (2003)10.1016/0888-7543(90)90206-A
/ Genomics / Pulsed-field gel analysis of alpha-satellite DNA at the human X chromosome centromere: high-frequency polymorphisms and array size estimate by Mahtani (1990)10.1073/pnas.0403659101
/ Proc. Natl. Acad. Sci. U. S. A. / Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize by Kato (2004)10.1073/pnas.0503863102
/ Proc. Natl. Acad. Sci. U. S. A. / Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species by Lee (2005)10.1073/pnas.0505100102
/ Proc. Natl. Acad. Sci. U. S. A. / Centromere renewal and replacement in the plant kingdom by Dawe (2005)10.1126/science.1251186
/ Science / Evolution of repeated DNA sequences by unequal crossover by Smith (1976)10.1101/gr.451502
/ Genome Res. / Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous α-satellite DNA array by Schindelhauer (2002)10.1093/genetics/115.3.553
/ Genetics / Peristence of tandem arrays: implications for satellite and simple-sequence DNAs by Walsh (1987)10.1093/nar/20.22.6033
/ Nucleic Acids Res. / PCR amplification of tandemly repeated DNA: analysis of intra- and interchromosomal sequence variation and homologous unequal crossing-over in human α satellite DNA by Warburton (1992)10.1126/science.1065042
/ Science / Genomic and genetic definition of a functional human centromere by Schueler (2001)10.1534/genetics.104.038208
/ Genetics / Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives by Hall (2005)10.1073/pnas.0509810102
/ Proc. Natl. Acad. Sci. U. S. A. / Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice by Ma (2006)10.1023/B:CHRO.0000036585.44138.4b
/ Chromosome Res. / Chromosomal dynamics of human neocentromere formation by Warburton (2004)10.1093/genetics/158.4.1615
/ Genetics / The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere by Maggert (2001)10.1073/pnas.0504235102
/ Proc. Natl. Acad. Sci. U. S. A. / Stable barley chromosomes without centromeric repeats by Nasuda (2005)10.1073/pnas.0507947103
/ Proc. Natl. Acad. Sci. U. S. A. / Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA by Lam (2006)10.1038/nsmb845
/ Nat. Struct. Mol. Biol. / Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin by Sullivan (2004)10.1093/nar/gkl137
/ Nucleic Acids Res. / Human centromeric alphoid domains are periodically homogenized so that they vary substantially between homologues. Mechanism and implications for centromere functioning by Roizes (2006)10.1126/science.286.5449.2468
/ Science / Genetic definition and sequence analysis of Arabidopsis centromeres by Copenhaver (1999)10.1093/dnares/9.4.117
/ DNA Res. / Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3 by Hosouchi (2002)10.1126/science.1064027
/ Science / Requirement of heterochromatin for cohesion at centromeres by Bernard (2001)10.1242/jcs.02702
/ J. Cell Sci. / Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome by Nakashima (2005)10.1016/S1097-2765(03)00279-X
/ Mol. Cell / Transcription within a functional human centromere by Saffery (2003)10.1105/tpc.105.037945
/ Plant Cell / Transcription and histone modifications in the recombination-free region spanning a rice centromere by Yan (2005)10.1016/S1534-5807(02)00135-1
/ Dev. Cell / Conserved organization of centromeric chromatin in flies and humans by Blower (2002)10.1534/genetics.106.056853
/ Genetics / Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27 by Shi (2006)10.1083/jcb.113.5.1091
/ J. Cell Biol. / The centromere-kinetochore complex: a repeat subunit model by Zinkowski (1991)10.1093/hmg/ddi008
/ Hum. Mol. Genet. / Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere by Chueh (2005)10.1073/pnas.172403699
/ Proc. Natl. Acad. Sci. U. S. A. / Histone H3 variants specify modes of chromatin assembly by Ahmad (2002)10.1016/S0092-8674(03)01064-X
/ Cell / Histone H3. 1 and H3. 3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis by Tagami (2004)10.1016/S0021-9258(17)44882-4
/ J. Biol. Chem. / Sequence analysis of acetylation and methylation in two histone H3 variants of alfalfa by Waterborg (1990)10.1093/nar/gkh992
/ Nucleic Acids Res. / Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications by Johnson (2004)10.1073/pnas.0308092100
/ Proc. Natl. Acad. Sci. U. S. A. / Histone H3.3 is enriched in covalent modifications associated with active chromatin by McKittrick (2004)10.1074/jbc.M509266200
/ J. Biol. Chem. / Expression patterns and post-translational modifications associated with mammalian histone H3 variants by Hake (2006)10.1093/nar/gki1011
/ Nucleic Acids Res. / Dynamic regulation of replication independent deposition of histone H3 in fission yeast by Choi (2005)10.1038/ng1602
/ Nat. Genet. / Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome by Cam (2005)10.1073/pnas.0601686103
/ Proc. Natl. Acad. Sci. U. S. A. / Chaperone-mediated assembly of centromeric chromatin in vitro by Furuyama (2006)10.1038/ncb1397
/ Nat. Cell Biol. / The human CENP-A centromeric nucleosome-associated complex by Foltz (2006)10.1083/jcb.136.3.501
/ J. Cell Biol. / Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites by Shelby (1997)10.1016/j.devcel.2006.01.014
/ Dev. Cell / Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores by Heun (2006)10.1038/ng0497-345
/ Nat. Genet. / Formation of de novo centromeres and construction of first-generation human artificial microchromosomes by Harrington (1997)10.1126/science.1078572
/ Science / Maintenance of stable heterochromatin domains by dynamic HP1 binding by Cheutin (2003)10.1126/science.1078694
/ Science / Modulation of heterochromatin protein 1 dynamics in primary mammalian cells by Festenstein (2003)10.1126/science.1093686
/ Science / RNAi-mediated targeting of heterochromatin by the RITS complex by Verdel (2004)10.1073/pnas.0407154101
/ Proc. Natl. Acad. Sci. U. S. A. / Centromere-encoded RNAs are integral components of the maize kinetochore by Topp (2004)10.1038/ng1289
/ Nat. Genet. / Sequencing of a rice centromere reveals active genes by Nagaki (2004)10.1093/genetics/131.3.683
/ Genetics / Somatic instability of a Drosophila chromosome by Wines (1992)10.1074/jbc.M206836200
/ J. Biol. Chem. / Cohesin defects lead to premature sister chromatid separation, kinetochore dysfunction, and spindle-assembly checkpoint activation by Hoque (2002)10.1242/jcs.01144
/ J. Cell Sci. / Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana by Shibata (2004)10.1105/tpc.104.028522
/ Plant Cell / Phosphoserines on maize centromeric histone H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation by Zhang (2005)10.1016/S0168-9525(02)02679-3
/ Trends Genet. / Advances in human artificial chromosome technology by Larin (2002)10.1023/B:CHRO.0000036593.72788.99
/ Chromosome Res. / The role of CENP-B and α-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres by Masumoto (2004)10.1007/BF00293329
/ Chromosoma / Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads by Earnshaw (1989)10.1093/hmg/9.2.175
/ Hum. Mol. Genet. / Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins by Saffery (2000)10.1093/emboj/cdg487
/ EMBO J. / Regulation of V(D)J recombination by nucleosome positioning at recombination signal sequences by Baumann (2003)10.1023/B:CHRO.0000036607.74671.db
/ Chromosome Res. / Plant neocentromeres: fast, focused, and driven by Dawe (2004){'key': '10.1016/j.tibs.2006.10.004_bib77', 'series-title': 'Genes in Conflict: The Biology of Selfish Genetic Elements', 'article-title': 'Female drive', 'author': 'Burt', 'year': '2006'}
/ Genes in Conflict: The Biology of Selfish Genetic Elements / Female drive by Burt (2006)10.1006/geno.1999.5742
/ Genomics / Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen by Puechberty (1999)10.1093/genetics/134.4.1149
/ Genetics / Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster by Lohe (1993)10.1093/oxfordjournals.jbchem.a124610
/ J. Biochem. (Tokyo) / Human centromere protein C (CENP-C) is a DNA-binding protein which possesses a novel DNA-binding motif by Sugimoto (1994)10.1083/jcb.200408113
/ J. Cell Biol. / A standardized kinesin nomenclature by Lawrence (2004)10.1038/38444
/ Nature / Crystal structure of the nucleosome core particle at 2.8Å resolution by Luger (1997)10.1105/tpc.010425
/ Plant Cell / Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant by Talbert (2002)10.1016/j.pbi.2003.09.007
/ Curr. Opin. Plant Biol. / DNA and proteins of plant centromeres by Houben (2003)10.1091/mbc.E05-07-0698
/ Mol. Biol. Cell / The CNA1 histone of the ciliate Tetrahymena thermophila is essential for chromosome segregation in the germline micronucleus by Cervantes (2006)10.1016/j.gene.2005.10.022
/ Gene / The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation by Miao (2006)
Dates
Type | When |
---|---|
Created | 18 years, 10 months ago (Oct. 31, 2006, 8:31 p.m.) |
Deposited | 4 years, 1 month ago (Aug. 4, 2021, 12:07 a.m.) |
Indexed | 1 year, 1 month ago (July 11, 2024, 7:08 p.m.) |
Issued | 18 years, 9 months ago (Dec. 1, 2006) |
Published | 18 years, 9 months ago (Dec. 1, 2006) |
Published Print | 18 years, 9 months ago (Dec. 1, 2006) |
@article{Dawe_2006, title={Centromeres put epigenetics in the driver’s seat}, volume={31}, ISSN={0968-0004}, url={http://dx.doi.org/10.1016/j.tibs.2006.10.004}, DOI={10.1016/j.tibs.2006.10.004}, number={12}, journal={Trends in Biochemical Sciences}, publisher={Elsevier BV}, author={Dawe, R. Kelly and Henikoff, Steven}, year={2006}, month=dec, pages={662–669} }