Crossref journal-article
Elsevier BV
Structure (78)
Bibliography

Wu, G.-H., Mitchell, P. G., Galaz-Montoya, J. G., Hecksel, C. W., Sontag, E. M., Gangadharan, V., Marshman, J., Mankus, D., Bisher, M. E., Lytton-Jean, A. K. R., Frydman, J., Czymmek, K., & Chiu, W. (2020). Multi-scale 3D Cryo-Correlative Microscopy for Vitrified Cells. Structure, 28(11), 1231-1237.e3.

Authors 13
  1. Gong-Her Wu (first)
  2. Patrick G. Mitchell (additional)
  3. Jesus G. Galaz-Montoya (additional)
  4. Corey W. Hecksel (additional)
  5. Emily M. Sontag (additional)
  6. Vimal Gangadharan (additional)
  7. Jeffrey Marshman (additional)
  8. David Mankus (additional)
  9. Margaret E. Bisher (additional)
  10. Abigail K.R. Lytton-Jean (additional)
  11. Judith Frydman (additional)
  12. Kirk Czymmek (additional)
  13. Wah Chiu (additional)
References 43 Referenced 73
  1. 10.1091/mbc.e08-01-0078 / Mol. Biol. Cell / Variant-specific [PSI+] infection is transmitted by Sup35 polymers within [PSI+] aggregates with heterogeneous protein composition by Bagriantsev (2008)
  2. 10.1016/j.tcb.2016.08.006 / Trends Cell Biol. / Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? by Beck (2016)
  3. 10.1093/genetics/165.4.1675 / Genetics / Destabilizing interactions among [PSI(+)] and [PIN(+)] yeast prion variants by Bradley (2003)
  4. 10.1038/nmeth.4405 / Nat. Methods / Convolutional neural networks for automated annotation of cellular cryo-electron tomograms by Chen (2017)
  5. 10.1126/science.7754373 / Science / Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+] by Chernoff (1995)
  6. {'key': '10.1016/j.str.2020.07.017_bib6', 'article-title': 'Cryogenic correlative single-particle photoluminescence spectroscopy and electron tomography for investigation of nanomaterials', 'author': 'Dahlberg', 'year': '2020', 'journal-title': 'Angew. Chem. Int. Ed.'} / Angew. Chem. Int. Ed. / Cryogenic correlative single-particle photoluminescence spectroscopy and electron tomography for investigation of nanomaterials by Dahlberg (2020)
  7. 10.1074/jbc.M115.655373 / J. Biol. Chem. / Structural mechanisms of mutant huntingtin aggregation suppression by the synthetic chaperonin-like cct5 complex explained by cryoelectron tomography by Darrow (2015)
  8. 10.1038/ncb2838 / Nat. Cell Biol. / Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress by Escusa-Toret (2013)
  9. 10.7554/eLife.45919 / eLife / PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy by Gorelick (2019)
  10. 10.1002/sca.20255 / Scanning / A comparison of conventional Everhart-Thornley style and in-lens secondary electron detectors—a further variable in scanning electron microscopy by Griffin (2011)
  11. 10.1016/j.cell.2015.11.029 / Cell / Structural basis of vesicle formation at the inner nuclear membrane by Hagen (2015)
  12. 10.1038/nprot.2016.168 / Nat. Protoc. / Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells by Hampton (2017)
  13. 10.1111/j.1365-2818.2007.01775.x / J. Microsc. / A technique for improved focused ion beam milling of cryo-prepared life science specimens by Hayles (2007)
  14. 10.1126/science.aaz5357 / Science / Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells by Hoffman (2020)
  15. 10.1038/nmeth.f.388 / Nat. Methods / The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution by Huff (2015)
  16. 10.1038/nature02026 / Nature / Global analysis of protein localization in budding yeast by Huh (2003)
  17. 10.1038/nature07195 / Nature / Misfolded proteins partition between two distinct quality control compartments by Kaganovich (2008)
  18. 10.1016/j.jsb.2016.01.015 / J. Struct. Biol. / Biomineralization pathways in a foraminifer revealed using a novel correlative cryo-fluorescence-SEM-EDS technique by Khalifa (2016)
  19. 10.1006/jsbi.1996.0013 / J. Struct. Biol. / Computer visualization of three-dimensional image data using IMOD by Kremer (1996)
  20. 10.1091/mbc.e12-03-0194 / Mol. Biol. Cell / Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates by Malinovska (2012)
  21. 10.1038/nmeth1014 / Nat. Methods / Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy by Marko (2007)
  22. 10.1016/j.jsb.2005.07.007 / J. Struct. Biol. / Automated electron microscope tomography using robust prediction of specimen movements by Mastronarde (2005)
  23. 10.1016/j.molcel.2018.04.007 / Mol. Cell / A liquid to solid phase transition underlying pathological huntingtin exon1 aggregation by Peskett (2018)
  24. 10.1002/jcc.20084 / J. Comput. Chem. / UCSF Chimera—a visualization system for exploratory research and analysis by Pettersen (2004)
  25. 10.1073/pnas.1201333109 / Proc. Natl. Acad. Sci. U S A / Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography by Rigort (2012)
  26. 10.1021/bi00009a012 / Biochem / Rubisco activase, a possible new member of the molecular chaperone family by Sanchez de Jimenez (1995)
  27. 10.21769/BioProtoc.1575 / Bio Protoc. / Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography by Schaffer (2015)
  28. 10.1038/s41592-019-0497-5 / Nat. Methods / A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue by Schaffer (2019)
  29. 10.1016/j.jsb.2013.09.024 / J. Struct. Biol. / Cryo FIB-SEM: volume imaging of cellular ultrastructure in native frozen specimens by Schertel (2013)
  30. 10.7554/eLife.00710 / Elife / TRiCs tricks inhibit huntingtin aggregation by Shahmoradian (2013)
  31. 10.1146/annurev-biochem-060815-014616 / Annu. Rev. Biochem. / Mechanisms and functions of spatial protein quality control by Sontag (2017)
  32. 10.1083/jcb.201106037 / J. Cell Biol. / Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae by Specht (2011)
  33. {'key': '10.1016/j.str.2020.07.017_bib33', 'series-title': 'The Visualization Handbook', 'first-page': '749', 'article-title': 'Amira: a highly interactive system for visual data analysis', 'author': 'Stalling', 'year': '2005'} / The Visualization Handbook / Amira: a highly interactive system for visual data analysis by Stalling (2005)
  34. 10.1111/j.1365-2818.2012.03635.x / J. Microsc. / Thinning of large mammalian cells for cryo-TEM characterization by cryo-FIB milling by Strunk (2012)
  35. 10.1016/j.jmb.2015.11.016 / J. Mol. Biol. / Mechanistic and structural insights into the prion-disaggregase activity of Hsp104 by Sweeny (2016)
  36. {'key': '10.1016/j.str.2020.07.017_bib36', 'article-title': 'A streamlined workflow for automated cryo focused ion beam milling', 'author': 'Tacke', 'year': '2020', 'journal-title': 'bioRxiv'} / bioRxiv / A streamlined workflow for automated cryo focused ion beam milling by Tacke (2020)
  37. 10.1063/1.4905434 / Rev. Sci. Instrum. / Contributed review: review of integrated correlative light and electron microscopy by Timmermans (2015)
  38. 10.1016/j.jsb.2016.09.016 / J. Struct. Biol. / Cryo-FIB-SEM serial milling and block face imaging: large volume structural analysis of biological tissues preserved close to their native state by Vidavsky (2016)
  39. 10.1016/j.cell.2015.08.041 / Cell / Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress by Wallace (2015)
  40. 10.2144/000113850 / Biotechniques / High-resolution three-dimensional reconstruction of a whole yeast cell using focused-ion beam scanning electron microscopy by Wei (2012)
  41. 10.7554/eLife.52286 / Elife / Fully automated, sequential focused ion beam milling for cryo-electron tomography by Zachs (2020)
  42. 10.1038/nmeth.4193 / Nat. Methods / MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy by Zheng (2017)
  43. 10.1016/j.cell.2014.09.026 / Cell / Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells by Zhou (2014)
Dates
Type When
Created 5 years ago (Aug. 18, 2020, 10:49 a.m.)
Deposited 3 years, 9 months ago (Nov. 3, 2021, 6:33 a.m.)
Indexed 2 weeks, 3 days ago (Aug. 5, 2025, 8:49 a.m.)
Issued 4 years, 9 months ago (Nov. 1, 2020)
Published 4 years, 9 months ago (Nov. 1, 2020)
Published Print 4 years, 9 months ago (Nov. 1, 2020)
Funders 2
  1. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
  2. National Institutes of Health 10.13039/100000002

    Region: Americas

    gov (National government)

    Labels3
    1. Institutos Nacionales de la Salud
    2. US National Institutes of Health
    3. NIH

@article{Wu_2020, title={Multi-scale 3D Cryo-Correlative Microscopy for Vitrified Cells}, volume={28}, ISSN={0969-2126}, url={http://dx.doi.org/10.1016/j.str.2020.07.017}, DOI={10.1016/j.str.2020.07.017}, number={11}, journal={Structure}, publisher={Elsevier BV}, author={Wu, Gong-Her and Mitchell, Patrick G. and Galaz-Montoya, Jesus G. and Hecksel, Corey W. and Sontag, Emily M. and Gangadharan, Vimal and Marshman, Jeffrey and Mankus, David and Bisher, Margaret E. and Lytton-Jean, Abigail K.R. and Frydman, Judith and Czymmek, Kirk and Chiu, Wah}, year={2020}, month=nov, pages={1231-1237.e3} }