Bibliography
Kushima, A., So, K. P., Su, C., Bai, P., Kuriyama, N., Maebashi, T., Fujiwara, Y., Bazant, M. Z., & Li, J. (2017). Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams. Nano Energy, 32, 271â279.
References
73
Referenced
439
10.1149/1.1837248
/ J. Electrochem. Soc. / The application of atomic force microscopy for the study of Li deposition processes by Aurbach (1996)10.1016/S0167-2738(02)00080-2
/ Solid State Ion. / A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions by Aurbach (2002)10.1109/JPROC.2012.2190170
/ Proc. IEEE / History, evolution, and future status of energy storage by Whittingham (2012)10.1039/C3EE40795K
/ Energy Environ. Sci. / Lithium metal anodes for rechargeable batteries by Xu (2014)10.1126/science.192.4244.1126
/ Science / Electrical Energy Storage and Intercalation Chemistry by Whittingham (1976)10.1016/j.jpowsour.2013.12.099
/ J. Power Sources / A review of lithium deposition in lithium-ion and lithium metal secondary batteries by Li (2014)10.1039/C6EE01674J
/ Energy Environ. Sci. / Transition of lithium growth mechanisms in liquid electrolytes by Bai (2016)10.1021/cm901452z
/ Chem. Mater. / Challenges for rechargeable Li batteries by Goodenough (2010)10.1016/0022-0248(76)90135-4
/ J. Cryst. Growth / Microscopic studies of transition metal chalcogenides by Chianelli (1976)10.1149/1.2129354
/ J. Electrochem. Soc. / Behavior of secondary lithium and by Epelboin (1980)10.1016/j.elecom.2006.07.037
/ Electrochem. Commun. / Lithium metal stripping/plating mechanisms studies: a metallurgical approach by Gireaud (2006)10.1016/j.electacta.2006.02.004
/ Electrochim. Acta / Dendrite short-circuit and fuse effect on Li/polymer/Li cells by Rosso (2006)10.1016/j.jpowsour.2014.03.029
/ J. Power Sources / Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium by Steiger (2014)10.1016/j.electacta.2014.05.120
/ Electrochimica Acta / Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution by Steiger (2014)10.1149/1.2969424
/ J. Electrochem. Soc. / Effect of electrolyte composition on lithium dendrite growth by Crowther (2008)10.1149/1.1606686
/ J. Electrochem. Soc. / Dendrite growth in lithium/polymer systems A propagation model for liquid electrolytes under Galvanostatic conditions by Monroe (2003){'key': '10.1016/j.nanoen.2016.12.001_bib17', 'first-page': '485', 'article-title': 'The electrolytic growth of dendrites from ionic solutions', 'volume': '268', 'author': 'Barton', 'year': '1962', 'journal-title': 'Proc. R. Soc. Lond. Math. Phys. Eng. Sci.'}
/ Proc. R. Soc. Lond. Math. Phys. Eng. Sci. / The electrolytic growth of dendrites from ionic solutions by Barton (1962)10.1149/1.2411588
/ J. Electrochem. Soc. / The mechanism of the dendritic electrocrystallization of zinc by Diggle (1969)10.1016/S0378-7753(98)00067-6
/ J. Power Sources / A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte by Yamaki (1998)10.1016/j.electacta.2003.09.010
/ Electrochimica Acta / Effect of vinylene carbonate as additive to electrolyte for lithium metal anode by Ota (2004)10.1149/1.1391629
/ J. Electrochem. Soc. / The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis(perfluoroethylsulfonylimide) [ LiN (C2F5SO2)2] by Naoi (1999)10.1149/1.1516770
/ J. Electrochem. Soc. / Effects of some organic additives on lithium deposition in propylene carbonate by Mogi (2002)10.1039/C2EE02911A
/ Energy Environ. Sci. / Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells by Zhamu (2012)10.1038/nnano.2014.152
/ Nat. Nanotechnol. / Interconnected hollow Carbon nanospheres for stable lithium metal anodes by Zheng (2014)10.1021/ja312241y
/ J. Am. Chem. Soc. / Dendrite-free lithium deposition via by Ding (2013)10.1016/S0022-0728(96)04870-X
/ J. Electroanal. Chem. / In situ observation of lithium deposition processes in solid polymer and gel electrolytes by Osaka (1997)10.1016/S0378-7753(98)00128-1
/ J. Power Sources / In situ scanning electron microscopy (SEM) Observation of interfaces within plastic lithium batteries by Orsini (1998)10.1016/S0378-7753(98)00241-9
/ J. Power Sources / In situ SEM study of the interfaces in plastic lithium cells by Orsini (1999){'year': '1992', 'author': 'Porter', 'series-title': 'Phase Transformations in Metals and Alloys', 'key': '10.1016/j.nanoen.2016.12.001_bib29'}
/ Phase Transformations in Metals and Alloys by Porter (1992)10.1038/309225a0
/ Nature / Fractal growth of copper electrodeposits by Brady (1984)10.1103/PhysRevLett.56.1264
/ Phys. Rev. Lett. / Morphology and microstructure in electrochemical deposition of zinc by Grier (1986)10.1016/0022-0728(91)85155-I
/ J. Electroanal. Chem. Interfacial Electrochem. / Pattern morphologies in zinc electrodeposition by Trigueros (1991)10.1103/PhysRevA.44.6693
/ Phys. Rev. A / Experimental aspects of dense morphology in copper electrodeposition by Fleury (1991)10.1103/PhysRevE.58.7700
/ Phys. Rev. E / Dynamical characterization of one-dimensional stationary growth regimes in diffusion-limited electrodeposition processes by Léger (1998)10.1016/S0378-7753(98)00242-0
/ J. Power Sources / Dendritic growth mechanisms in lithium/polymer cells by Brissot (1999)10.1016/S0378-7753(01)00734-0
/ J. Power Sources / Onset of dendritic growth in lithium/polymer cells by Rosso (2001)10.1149/2.025211jes
/ J. Electrochem. Soc. / Experimental and theoretical investigation of by Tang (2012)10.1149/1.1519970
/ Electrochem. Solid-State Lett. / Live scanning electron microscope observations of dendritic growth in lithium/polymer cells by Dollé (2002)10.1126/science.1195628
/ Science / In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode by Huang (2010)10.1002/aenm.201200024
/ Adv. Energy Mater. / In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures by Liu (2012)10.1038/nnano.2011.161
/ Nat. Nanotechnol. / Electron microscopy of specimens in liquid by de Jonge (2011)10.1126/science.1219185
/ Science / Real-time imaging of Pt3Fe nanorod growth in solution by Liao (2012)10.1038/srep03227
/ Sci. Rep. / Structural and morphological evolution of lead dendrites during electrochemical migration by Sun (2013)10.1039/c3cc49029g
/ Chem. Commun. / Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy by Sacci (2014)10.1021/nl403922u
/ Nano Lett. / Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM by Zeng (2014)10.1038/srep34267
/ Sci. Rep. / The impact of Li grain size on Coulombic efficiency in Li batteries by Mehdi (2016)10.1021/acs.nanolett.5b03812
/ Nano Lett. / Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li-Oxygen battery by Kushima (2015)10.1021/nl5048626
/ Nano Lett. / Nanoscale imaging of fundamental Li battery chemistry: by Sacci (2015)10.1002/cssc.201500600
/ ChemSusChem / Importance of reaction kinetics and oxygen crossover in aprotic Li–O2 batteries based on a dimethyl sulfoxide electrolyte by Marinaro (2015)10.1002/elan.1140050802
/ Electroanalysis / Theory of ultramicroelectrodes by Aoki (1993)10.1149/1.1872737
/ J. Electrochem. Soc. / Transport properties of LiPF6-based Li-ion battery electrolytes by Valøen (2005)10.1016/S0378-7753(97)02771-7
/ J. Power Sources / Surface films of lithium: an overview of electrochemical studies by Munichandraiah (1998)10.1149/1.1644601
/ J. Electrochem. Soc. / Solvent diffusion model for aging of by Ploehn (2004)10.1149/2.044302jes
/ J. Electrochem. Soc. / Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction by Pinson (2013)10.1016/j.jpowsour.2013.11.101
/ J. Power Sources / Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life by Gogoana (2014)10.1021/ma00092a013
/ Macromolecules / Self-diffusion of dimethyl sulfoxide and dimethylformamide in solutions and gels of cellulose acetates by pulsed field gradient NMR by Ilyina (1994)10.1088/0034-4885/12/1/308
/ Rep. Prog. Phys. / Theory of the oxidation of metals by Cabrera (1949)10.1038/nmat3793
/ Nat. Mater. / Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes by Harry (2014)10.1016/S0167-2738(02)00360-0
/ Solid State Ion. / Metal-based very thin film anodes for lithium ion microbatteries by Taillades (2002)10.1039/C4FD00145A
/ Faraday Discuss. / In situ TEM study of the Li–Au reaction in an electrochemical liquid cell by Zeng (2015){'year': '1983', 'author': 'Peled', 'series-title': 'Lithium Batteries', 'key': '10.1016/j.nanoen.2016.12.001_bib61'}
/ Lithium Batteries by Peled (1983)10.1557/PROC-393-209
/ Mater. Res. Soc. Symp. Proc. / M19 by Peled (1995)10.1149/1.1837858
/ J. Electrochem. Soc. / Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes by Peled (1997){'year': '1995', 'author': 'Barbasi', 'series-title': 'Fractal Concepts in Surface Growth', 'key': '10.1016/j.nanoen.2016.12.001_bib64'}
/ Fractal Concepts in Surface Growth by Barbasi (1995)10.1016/0001-6160(58)90120-2
/ Acta Metall. / Growth of whiskers in the solid phase by Franks (1958)10.1103/PhysRevB.49.2030
/ Phys. Rev. B / Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions by Tu (1994)10.1063/1.3147864
/ Appl. Phys. Lett. / Local, submicron, strain gradients as the cause of Sn whisker growth by Sobiech (2009)10.1038/srep02113
/ Sci. Rep. / Visualizing size-dependent deformation mechanism transition in Sn by Tian (2013)10.1038/nmat4105
/ Nat. Mater. / Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles by Sun (2014)10.1038/nmat2460
/ Nat. Mater. / A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries by Ji (2009)10.1038/nmat3191
/ Nat. Mater. / Li-O2 and Li-S batteries with high energy storage by Bruce (2012)10.1021/jz1005384
/ J. Phys. Chem. Lett. / Lithium−air by Girishkumar (2010)10.1038/nenergy.2016.111
/ Nat. Energy / Anion-redox nanolithia cathodes for Li-ion batteries by Zhu (2016)
Dates
Type | When |
---|---|
Created | 8 years, 8 months ago (Dec. 7, 2016, 2:16 p.m.) |
Deposited | 4 years, 3 months ago (April 26, 2021, 10:01 p.m.) |
Indexed | 2 weeks ago (Aug. 6, 2025, 9:39 a.m.) |
Issued | 8 years, 6 months ago (Feb. 1, 2017) |
Published | 8 years, 6 months ago (Feb. 1, 2017) |
Published Print | 8 years, 6 months ago (Feb. 1, 2017) |
Funders
4
Honda R&D Co., Ltd.
Global Climate and Energy Project at Stanford University
10.13039/100005492
Stanford UniversityRegion: Americas
gov (Universities (academic only))
Labels
3
- Stanford
- Leland Stanford Junior University
- SU
US Department of Energy, Basic Energy Sciences through the SUNCAT Center for Interface Science and Catalysis
10.13039/100006151
Basic Energy SciencesRegion: Americas
gov (National government)
Labels
6
- Office of Basic Energy Sciences
- DOE Office of Basic Energy Sciences
- US Department of Energy's Basic Energy Sciences
- DOE Basic Energy Sciences
- Department of Energy Basic Energy Sciences Program
- BES
National Science Foundation
10.13039/100000001
Region: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Awards
2
- ECCS-1610806
- DMR-1419807
@article{Kushima_2017, title={Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams}, volume={32}, ISSN={2211-2855}, url={http://dx.doi.org/10.1016/j.nanoen.2016.12.001}, DOI={10.1016/j.nanoen.2016.12.001}, journal={Nano Energy}, publisher={Elsevier BV}, author={Kushima, Akihiro and So, Kang Pyo and Su, Cong and Bai, Peng and Kuriyama, Nariaki and Maebashi, Takanori and Fujiwara, Yoshiya and Bazant, Martin Z. and Li, Ju}, year={2017}, month=feb, pages={271–279} }