Crossref
journal-article
Elsevier BV
Journal of Structural Biology (78)
Authors
4
- Xiangrui Zeng (first)
- Miguel Ricardo Leung (additional)
- Tzviya Zeev-Ben-Mordehai (additional)
- Min Xu (additional)
References
47
Referenced
39
- Abadi, Martín, Barham, Paul, Chen, Jianmin, Chen, Zhifeng, Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghemawat, Sanjay, Irving, Geoffrey, Isard, Michael, et al.,2016. TensorFlow: a system for large-scale machine learning.arXiv preprint arXiv:1605.08695.
{'key': '10.1016/j.jsb.2017.12.015_b0010', 'first-page': '420', 'article-title': 'On the surprising behavior of distance metrics in high dimensional space', 'author': 'Aggarwal', 'year': '2001'}
/ On the surprising behavior of distance metrics in high dimensional space by Aggarwal (2001)- Krizhevsky, Alex, Sutskever, Ilya, Hinton, 2012. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp. 1097–1105.
- Badrinarayanan, Vijay, Kendall, Alex, Cipolla, Roberto, 2015. Segnet: a deep convolutional encoder-decoder architecture for image segmentation.arXiv preprint arXiv:1511.00561.
10.1109/TIP.2005.852467
/ IEEE Trans. Image Process. / An energy-based three-dimensional segmentation approach for the quantitative interpretation of electron tomograms by Bartesaghi (2005)10.1016/j.jsb.2008.02.008
/ J. Struct. Biol. / Classification and 3D averaging with missing wedge correction in biological electron tomography by Bartesaghi (2008)10.1038/nature06170
/ Nature / Snapshots of nuclear pore complexes in action captured by cryo-electron tomography by Beck (2007)-
Chatterjee, Priyam, Milanfar, Peyman, 2008. A generalization of non-local means via kernel regression. In: Computational Imaging Vi. p. 68140.
(
10.1117/12.778615
) -
Chen, Yuxiang, Hrabe, Thomas, Pfeffer, Stefan, Pauly, Olivier, Mateus, Diana, Navab, Nassir, Forster, F., 2012. Detection and identification of macromolecular complexes in cryo-electron tomograms using support vector machines. In: Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on. IEEE. pp. 1373–1376.
(
10.1109/ISBI.2012.6235823
) 10.1016/j.str.2014.08.007
/ Structure / Autofocused 3D classification of cryoelectron subtomograms by Chen (2014)-
Chen, Muyuan, Dai, Wei, Sun, Ying, Jonasch, Darius, He, Cynthia Y., Schmid, Michael F., Chiu, Wah, Ludtke, Steven J., 2017. Convolutional Neural Networks for Automated Annotation of Cellular Cryo-Electron Tomograms.arXiv preprint arXiv:1701.05567.
(
10.1038/nmeth.4405
) 10.1016/j.bbamcr.2017.03.009
/ Biochim. Biophys. Acta / Deciphering the molecular architecture of membrane contact sites by cryo-electron tomography? by Collado (2017)10.1016/j.jsb.2015.01.008
/ J. Struct. Biol. / Cryo-electron tomography of plunge-frozen whole bacteria and vitreous sections to analyze the recently described bacterial cytoplasmic structure, the Stack by Delgado (2015)- François Chollet. keras. < https://github.com/fchollet/keras>, 2015.
10.1016/j.str.2017.04.016
/ Structure / TomoMiner and TomoMinerCloud: a software platform for large-scale subtomogram structural analysis by Frazier (2017){'year': '2016', 'series-title': 'Deep Learning', 'author': 'Goodfellow', 'key': '10.1016/j.jsb.2017.12.015_b0080'}
/ Deep Learning by Goodfellow (2016)10.1126/science.1090284
/ Science / Three-dimensional structure of herpes simplex virus from cryo-electron tomography by Grünewald (2003)10.1016/j.str.2016.05.004
/ Structure / Actin organization in cells responding to a perforated surface, revealed by live imaging and cryo-electron tomography by Jasnin (2016)10.1016/j.jsb.2013.06.012
/ J. Struct. Biol. / Single-cell lysis for visual analysis by electron microscopy by Kemmerling (2013)- Kingma, Diederik, Ba, Jimmy, 2014. Adam: a method for stochastic optimization.arXiv preprint arXiv:1412.6980.
10.1109/5.726791
/ Proc. IEEE / Gradient-based learning applied to document recognition by LeCun (1998)10.1038/nature14539
/ Nature / Deep learning by LeCun (2015)-
Lee, Honglak, Battle, Alexis, Raina, Rajat, Ng, Andrew Y., 2006. Efficient sparse coding algorithms. In: International Conference on Neural Information Processing Systems. pp. 801–808.
(
10.7551/mitpress/7503.003.0105
) -
Lee, Honglak, Battle, Alexis, Raina, Rajat, Ng, Andrew Y., 2007. Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems. pp. 801–808.
(
10.7551/mitpress/7503.003.0105
) -
Long, Jonathan, Shelhamer, Evan, Darrell, Trevor, 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3431–3440.
(
10.1109/CVPR.2015.7298965
) 10.1016/j.jsb.2017.02.007
/ J. Struct. Biol. / SuRVoS: super-region volume segmentation workbench by Luengo (2017)10.1016/j.jsb.2011.05.010
/ J. Struct. Biol. / A differential structure approach to membrane segmentation in electron tomography by Martinez-Sanchez (2011)10.1016/j.jsb.2012.10.002
/ J. Struct. Biol. / A ridge-based framework for segmentation of 3D electron microscopy datasets by Martinez-Sanchez (2013){'year': '2002', 'series-title': 'Performance Evaluation of Some Clustering Algorithms and Validity Indices', 'author': 'Maulik', 'key': '10.1016/j.jsb.2017.12.015_b0145'}
/ Performance Evaluation of Some Clustering Algorithms and Validity Indices by Maulik (2002)10.1093/bioinformatics/btr207
/ Bioinformatics / Template-free detection of macromolecular complexes in cryo electron tomograms by Min (2011)10.1093/bioinformatics/btx230
/ Bioinformatics / Deep learning based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms by Min (2017)- Ng, Andrew, 2011. Sparse autoencoder.CS294A Lecture notes, 72(1), 19.
- Ngiam, Jiquan, Coates, Adam, Lahiri, Ahbik, Prochnow, Bobby, Le, Quoc V., Ng, Andrew Y., 2011. On optimization methods for deep learning. In: Proceedings of the 28th international conference on machine learning (ICML-11). pp. 265–272.
{'key': '10.1016/j.jsb.2017.12.015_b0170', 'first-page': '2825', 'article-title': 'Scikit-learn: machine learning in Python', 'volume': '12', 'author': 'Pedregosa', 'year': '2011', 'journal-title': 'J. Mach. Learn. Res.'}
/ J. Mach. Learn. Res. / Scikit-learn: machine learning in Python by Pedregosa (2011)10.1186/s12859-016-1283-3
/ BMC Bioinf. / Simulating cryo electron tomograms of crowded cell cytoplasm for assessment of automated particle picking by Pei (2016)10.1002/jcc.20084
/ J. Comput. Chem. / UCSF Chimeraa visualization system for exploratory research and analysis by Pettersen (2004)10.1109/MCSE.2011.35
/ Comput. Sci. Eng. / Mayavi: 3D visualization of scientific data by Ramachandran (2011){'key': '10.1016/j.jsb.2017.12.015_b0190', 'article-title': 'Automated segmentation of electron tomograms for a quantitative description of actin filament networks', 'author': 'Rigort', 'year': '2011', 'journal-title': 'J. Struct. Biol.'}
/ J. Struct. Biol. / Automated segmentation of electron tomograms for a quantitative description of actin filament networks by Rigort (2011)10.1016/j.str.2009.10.009
/ Structure / Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization by Scheres (2009)10.1016/j.jsb.2006.05.009
/ J. Struct. Biol. / EMAN2: an extensible image processing suite for electron microscopy by Tang (2007)10.1111/1467-9868.00293
/ J. R. Stat. Soc. / Estimating the number of clusters in a data set via the gap statistic by Tibshirani (2001)10.1109/MSP.2010.939537
/ IEEE Signal Process. Mag. / Dictionary learning by Tosic (2011)10.1016/0169-7439(87)80084-9
/ Chemometrics Intelligent Lab. Syst. / Principal component analysis by Wold (1987){'key': '10.1016/j.jsb.2017.12.015_b0220', 'first-page': '74', 'article-title': '3D rotation invariant features for the characterization of molecular density maps', 'author': 'Xu', 'year': '2009'}
/ 3D rotation invariant features for the characterization of molecular density maps by Xu (2009)10.1016/j.jsb.2012.02.014
/ J. Struct. Biol. / High-throughput subtomogram alignment and classification by Fourier space constrained fast volumetric matching by Xu (2012)- Xu, Min, Tocheva, Elitza I., Chang, Yi-Wei, Jensen, Grant J., Alber, Frank, 2015. De novo visual proteomics in single cells through pattern mining.arXiv preprint arXiv:1512.09347.
{'year': '2015', 'series-title': 'Efficient Extraction of Macromolecular Complexes from Electron Tomograms Based on Reduced Representation Templates', 'author': 'Xu', 'key': '10.1016/j.jsb.2017.12.015_b0235'}
/ Efficient Extraction of Macromolecular Complexes from Electron Tomograms Based on Reduced Representation Templates by Xu (2015)
Dates
Type | When |
---|---|
Created | 7 years, 8 months ago (Dec. 28, 2017, 1:21 p.m.) |
Deposited | 2 years ago (Aug. 30, 2023, 4:05 a.m.) |
Indexed | 4 days, 23 hours ago (Aug. 26, 2025, 2:36 a.m.) |
Issued | 7 years, 3 months ago (May 1, 2018) |
Published | 7 years, 3 months ago (May 1, 2018) |
Published Print | 7 years, 3 months ago (May 1, 2018) |
Funders
4
NIH
10.13039/100000002
National Institutes of HealthRegion: Americas
gov (National government)
Labels
3
- Institutos Nacionales de la Salud
- US National Institutes of Health
- NIH
Awards
1
- P41 GM103712
Wellcome Trust and the Royal Society
Awards
1
- 107578/Z/15/Z
Wellcome Trust Joint Infrastructure Fund Award
Awards
1
- 060208/Z/00/Z
Wellcome Trust Equipment
Awards
1
- 093305/Z/10/Z
@article{Zeng_2018, title={A convolutional autoencoder approach for mining features in cellular electron cryo-tomograms and weakly supervised coarse segmentation}, volume={202}, ISSN={1047-8477}, url={http://dx.doi.org/10.1016/j.jsb.2017.12.015}, DOI={10.1016/j.jsb.2017.12.015}, number={2}, journal={Journal of Structural Biology}, publisher={Elsevier BV}, author={Zeng, Xiangrui and Leung, Miguel Ricardo and Zeev-Ben-Mordehai, Tzviya and Xu, Min}, year={2018}, month=may, pages={150–160} }