Crossref journal-article
Elsevier BV
Journal of the Mechanics and Physics of Solids (78)
Bibliography

Seiner, H., Straka, L., & Heczko, O. (2014). A microstructural model of motion of macro-twin interfaces in Ni–Mn–Ga 10M martensite. Journal of the Mechanics and Physics of Solids, 64, 198–211.

Authors 3
  1. Hanuš Seiner (first)
  2. Ladislav Straka (additional)
  3. Oleg Heczko (additional)
References 48 Referenced 91
  1. 10.1016/j.jmps.2006.03.009 / J. Mech. Phys. Solids / Stressed microstructures in thermally induced M9R-M18R martensites by Balandraud (2007)
  2. 10.1007/BF00281246 / Arch. Ration. Mech. Anal. / Fine phase mixtures as minimizers of energy by Ball (1987)
  3. 10.1098/rsta.1992.0013 / Philos. Trans. / Proposed experimental tests of theory of fine microstructure and the two-well problem by Ball (1992)
  4. Ball, J.M., Koumatos, K., Seiner, H., 2009. An analysis of non-classical austenite–martensite interfaces in CuAlNi. In: Olson, G.B., Lieberman D.S., Saxena A. (Eds.), Proceedings of the International Conference on Martensitic Transformations (ICOMAT-08), Santa Fe, NM, June 29–July 5. The Minerals, Metals & Materials Society (TMS), Warrendale, pp. 383–390. 〈http://arxiv.org/abs/1108.6220〉) (10.1002/9781118803592.ch56)
  5. 10.1016/j.jmps.2012.08.009 / J. Mech. Phys. Solids / Structures undergoing discrete phase transformation by Benichou (2013)
  6. 10.1063/1.4773995 / Appl. Phys. Letters / Application of a bi-stable chain model for the analysis of jerky twin boundary motion in NiMnGa by Benichou (2013)
  7. Bhattacharya, K., 2003. Microstructure of martensite. Oxford Series on Materials Modelling, Oxford University Press, New York.
  8. 10.1007/s002050050170 / Arch. Ration. Mech. Anal. / The simply laminated microstructure in martensitic crystals that undergo a cubic to orthorhombic phase transformation by Bhattacharya (1999)
  9. 10.1103/PhysRevB.64.144105 / Phys. Rev. B / Bending martensite needles in Ni65Al35 investigated by two-dimensional elasticity and high-resolution transmission electron microscopy by Boullay (2001)
  10. 10.1016/0956-716X(95)00370-B / Scr. Metall. Mater. / The development of new ferromagnetic shape memory alloys in Ni–Mn–Ga system by Chernenko (1995)
  11. Chu, C., 1993. Hysteresis and Microstructure: A Study of Biaxial Loading on Compound Twins of Copper–Aluminum–Nickel Single Crystals (Ph.D. thesis), University of Minnesota.
  12. 10.1016/j.scriptamat.2010.05.028 / Scr. Mater. / Change in microstructure during training of a Ni50Mn29Ga21 bicrystal by Chulist (2010)
  13. Chulist, R., Straka, L., Lanska, N., Soroka, A., Sozinov, A., Skrotzki, W., 2013. Characterization of mobile type I and type II twin boundaries in 10 M modulated Ni–Mn–Ga martensite by electron backscatter diffraction. Acta Mater. 61, 1913–1920. (10.1016/j.actamat.2012.12.012)
  14. Faran, E., 2012. Personal communication.
  15. 10.1016/j.jmps.2011.02.009 / J. Mech. Phys. Solids / The kinetic relation for twin wall motion in NiMnGa by Faran (2011)
  16. 10.1063/1.3702459 / Appl. Phys. Lett. / Implications of twinning kinetics on the frequency response in NiMnGa actuators by Faran (2012)
  17. 10.1016/j.jmps.2012.11.004 / J. Mech. Phys. Solids / The kinetic relation for twin wall motion in NiMnGa – Part 2 by Faran (2013)
  18. 10.1016/j.msea.2005.12.057 / Mater. Sci. Eng. A / Crystal structure and macrotwin interface of five-layered martensite in Ni–Mn–Ga magnetic shape memory alloy by Ge (2006)
  19. 10.1109/20.908764 / IEEE Trans. Magn. / Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy by Heczko (2000)
  20. 10.1063/1.1626800 / J. Appl. Phys. / Temperature dependence and temperature limits of magnetic shape memory effect by Heczko (2003)
  21. 10.1063/1.4817941 / Appl. Phys. Lett. / Magnetic shape memory effect at 1.7K by Heczko (2013)
  22. 10.1016/j.actamat.2012.10.007 / Acta Mater. / Different microstructures of mobile twin boundaries in 10M modulated Ni–Mn–Ga martensite by Heczko (2013)
  23. Heczko, O., Kopeček, J., Straka, L., Seiner, H., 2013c. Differently mobile twin boundaries and magnetic shape memory effect in10 M martensite of Ni–Mn–Ga. Mater. Res. Bull., 48, 5105–5109. (10.1016/j.materresbull.2013.04.034)
  24. 10.1103/PhysRevLett.104.145702 / Phys. Rev. Lett. / Adaptive modulations of martensites by Kaufmann (2010)
  25. 10.1088/1367-2630/13/5/053029 / New J. Phys. / Modulated martensite by Kaufmann (2011)
  26. 10.1103/PhysRevB.43.10832 / Phys. Rev. B / Adaptive phase formation in martensitic transformation by Khachaturyan (1991)
  27. 10.2320/matertrans1989.33.278 / Mater. Trans. Jpn. Inst. Met. / Adaptive phase in martensitic transformation by Khachaturyan (1991)
  28. 10.1016/j.mechmat.2008.02.004 / Mech. Mater. / A multi-scale model of martensitic transformation plasticity by Kouznetsova (2008)
  29. 10.1063/1.1748860 / J. Appl. Phys. / Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys by Lanska (2004)
  30. 10.1016/j.actamat.2012.09.001 / Acta Mater. / Evidence for a monoclinic incommensurate superstructure in modulated martensite by Li (2012)
  31. 10.2320/matertrans.M2012002 / Mater. Trans. / Transmission electron microscopy of twins in 10M martensite in Ni–Mn–Ga ferromagnetic shape memory alloy by Matsuda (2012)
  32. 10.1002/adem.201200058 / Adv. Eng. Mater. / The role of adaptive martensite in magnetic shape memory alloys by Niemann (2012)
  33. 10.1063/1.373136 / J. Appl. Phys. / Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials (invited) by O'Handley (2000)
  34. 10.1016/S1359-6454(97)00203-6 / Acta Mater. / Generic and non-generic cubic-to-monoclinic transitions and their twins by Pitteri (1998)
  35. 10.1007/BF01845216 / Arch. Ration. Mech. Anal. / A microstructure of martensite which is not a minimiser of energy by Ruddock (1994)
  36. 10.1016/j.actamat.2007.05.040 / Acta Mater. / Commensurate and incommensurate “5M” modulated crystal structures in Ni–Mn–Ga martensitic phases by Righi (2007)
  37. 10.1016/S0020-7683(02)00167-1 / Int. J. Solid Struct. / Microstructures and interfaces in Ni–Al martensite by Schryvers (2002)
  38. 10.1080/01411590903366160 / Phase Trans. / Non-classical austenite–martensite interfaces observed in single crystals of Cu–Al–Ni by Seiner (2009)
  39. 10.1615/IntJMultCompEng.v7.i5.60 / Int. J. Multiscale Comp. Eng. / Interfacial microstructures in martensitic transitions by Seiner (2009)
  40. 10.1063/1.2737926 / Appl. Phys. Lett. / Investigation of twin boundary thickness and energy in CuAlNi shape memory alloy by Shilo (2007)
  41. 10.1063/1.3640489 / Appl. Phys. Lett. / Highly mobile type II twin boundary in Ni–Mn–Ga five-layered martensite by Sozinov (2011)
  42. 10.1016/j.actamat.2011.09.020 / Acta Mater. / Highly mobile twinned interface in 10M modulated Ni–Mn–Ga martensite by Straka (2011)
  43. 10.1016/j.scriptamat.2012.03.012 / Scr. Mater. / Temperature dependence of twinning stress of Type I and Type II twins in 10M modulated Ni–Mn–Ga martensite by Straka (2012)
  44. 10.1063/1.4817717 / J. Appl. Phys. / Effect of intermartensite transformation on twinning stress in Ni–Mn–Ga 10M martensite by Straka (2013)
  45. 10.1007/s00161-011-0222-9 / Continuum Mech. Thermodyn. / Almost compatible X-microstructures in CuAlNi shape memory alloy by Stupkiewicz (2012)
  46. 10.1016/j.ijsolstr.2005.06.065 / Int. J. Solids Struct. / A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations by Turteltaub (2006)
  47. 10.1016/j.actamat.2005.01.033 / Acta Mater. / The self-accommodated morphology of martensite in nanocrystalline NiTi shape memory alloys by Waitz (2005)
  48. 10.1209/epl/i2005-10061-y / Europhys. Lett. / Size-dependent martensitic transformation path causing atomic-scale twinning of nanocrystalline NiTi shape memory alloys by Waitz (2005)
Dates
Type When
Created 11 years, 9 months ago (Nov. 20, 2013, 11:17 p.m.)
Deposited 6 years ago (Aug. 3, 2019, 5:32 p.m.)
Indexed 1 week, 5 days ago (Aug. 12, 2025, 6:23 p.m.)
Issued 11 years, 5 months ago (March 1, 2014)
Published 11 years, 5 months ago (March 1, 2014)
Published Print 11 years, 5 months ago (March 1, 2014)
Funders 2
  1. Academy of Sciences of the Czech Republic 10.13039/501100004240 Akademie Věd České Republiky

    Region: Europe

    gov (National government)

    Labels9
    1. Akademie věd ČR
    2. Academy of Sciences of the Czechia
    3. CzechAcademy
    4. Czechoslovak Academy of Sciences
    5. Academy of Sciences of the Czech Republic
    6. Akademie věd ČR
    7. Czech Academy of Sciences
    8. AV ČR
    9. CAS
    Awards1
    1. M100761203
  2. Czech Science Foundation 10.13039/501100001824 Grantová Agentura České Republiky

    Region: Europe

    pri (Trusts, charities, foundations (both public and private))

    Labels9
    1. Grant Agency of the Czech Republic
    2. Czech Science Foundation
    3. Grantová agentura ČR
    4. Grantové agentury
    5. GrantovaAgentura
    6. GAČR
    7. GACR
    8. GA ČR
    9. GA CR
    Awards2
    1. 101/09/0702
    2. 107/11/0391

@article{Seiner_2014, title={A microstructural model of motion of macro-twin interfaces in Ni–Mn–Ga 10M martensite}, volume={64}, ISSN={0022-5096}, url={http://dx.doi.org/10.1016/j.jmps.2013.11.004}, DOI={10.1016/j.jmps.2013.11.004}, journal={Journal of the Mechanics and Physics of Solids}, publisher={Elsevier BV}, author={Seiner, Hanuš and Straka, Ladislav and Heczko, Oleg}, year={2014}, month=mar, pages={198–211} }