Crossref journal-article
Elsevier BV
Journal of the Mechanics and Physics of Solids (78)
Bibliography

Acharya, A., Tang, H., Saigal, S., & L. Bassani, J. (2004). On boundary conditions and plastic strain-gradient discontinuity in lower-order gradient plasticity. Journal of the Mechanics and Physics of Solids, 52(8), 1793–1826.

Authors 4
  1. Amit Acharya (first)
  2. Huang Tang (additional)
  3. Sunil Saigal (additional)
  4. John L. Bassani (additional)
References 23 Referenced 30
  1. 10.1098/rspa.2002.1095 / Proc. R. Soc. London A / Driving forces and boundary conditions in continuum dislocation mechanics by Acharya (2003)
  2. {'key': '10.1016/j.jmps.2004.02.005_BIB2', 'series-title': 'IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials', 'first-page': '3', 'article-title': 'On nonlocal flow theories that preserve the classical structure of incremental boundary value problems', 'author': 'Acharya', 'year': '1996'} / IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials / On nonlocal flow theories that preserve the classical structure of incremental boundary value problems by Acharya (1996)
  3. 10.1016/S0022-5096(99)00075-7 / J. Mech. Phys. Solids / Lattice incompatibility and a gradient theory of crystal plasticity by Acharya (2000)
  4. 10.1016/S0022-5096(00)00013-2 / J. Mech. Phys. Solids / Grain-size effect in FCC viscoplastic polycrystals at moderate strains by Acharya (2000)
  5. 10.1016/0022-5096(95)00054-M / J. Mech. Phys. Solids / Thermodynamic restrictions on constitutive equations for second-deformation-gradient inelastic behavior by Acharya (1995)
  6. 10.1002/(SICI)1099-1484(199903)4:2<153::AID-CFM80>3.0.CO;2-3 / Mech. Cohesive-Frictional Mater. / A new proposal in gradient plasticity by Acharya (1999)
  7. 10.1016/S0065-2156(08)70175-3 / Adv. Appl. Mech. / Plastic Flow of Crystals by Bassani (1994)
  8. 10.1016/S0022-5096(01)00037-0 / J. Mech. Phys. Solids / Incompatibility and a simple gradient theory of plasticity by Bassani (2001)
  9. 10.1016/S0020-7683(00)00059-7 / Int. J. Solids Struct. / Size effects in composites by Bassani (2001)
  10. 10.1016/S0921-5093(00)01620-8 / Mater. Sci. Eng. / A model for rate-dependent flow of metal polycrystals based on the slip plane lattice incompatibility by Beaudoin (2001)
  11. 10.1016/S1359-6454(00)00136-1 / Acta Mater. / Consideration of grain-size effect and kinetics in the plastic deformation of metal polycrystals by Beaudoin (2000)
  12. 10.1016/S0022-5096(01)00049-7 / J. Mech. Phys. Solids / A reformulation of strain gradient plasticity by Fleck (2001)
  13. 10.1002/cpa.3160110306 / Commun. Pure Appl. Math. / Symmetric positive linear differential equations by Friedrichs (1958)
  14. 10.1016/S0022-5096(01)00104-1 / J. Mech. Phys. Solids / A gradient theory of single crystal viscoplasticity that accounts for geometrically necessary dislocations by Gurtin (2002)
  15. 10.1016/0022-5096(58)90029-2 / J. Mech. Phys. Solids / A general theory of uniqueness and stability in elastic–plastic solids by Hill (1958)
  16. John, F., 1982, Partial Differential Equations, Applied Mathematical Sciences, Vol. 1. Springer, Berlin. (10.1007/978-1-4684-9333-7_1)
  17. Lax, P.D., 1973. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS series, SIAM, Philadelphia. (10.1137/1.9781611970562)
  18. Niordson, C.F., Hutchinson, J.W., 2003. On lower-order strain gradient plasticity theories. Eur. J. Mech. A/Solids 22, 771–778. (10.1016/S0997-7538(03)00069-X)
  19. 10.1016/S0022-5096(00)00074-0 / J. Mech. Phys. Solids / Boundary layers in constrained plastic flow by Shu (2001)
  20. Strang, G., 1986. Introduction to Applied Mathematics. Wellesley-Cambridge Press, Cambridge, MA, USA.
  21. Tang, H., Choi, Y.S., Acharya, A., Saigal, S., 2003a. Effects of lattice incompatibility-induced-hardening on the fracture behavior of ductile single crystals, submitted.
  22. Tang, H., Acharya, A., Saigal, S., 2003b. Directional dependence of crack growth along the interface of a bicrystal with symmetric tilt Boundary in the presence of gradient effects, Preprint.
  23. Volokh, K.Yu., Hutchinson, J.W., 2002. Are lower-order gradient theories of plasticity really lower order? J. Appl. Mech. 69, 862–864. (10.1115/1.1504096)
Dates
Type When
Created 21 years, 5 months ago (March 25, 2004, 8:59 a.m.)
Deposited 5 years, 5 months ago (March 31, 2020, 4 p.m.)
Indexed 1 year, 7 months ago (Jan. 30, 2024, 2:20 a.m.)
Issued 21 years, 1 month ago (Aug. 1, 2004)
Published 21 years, 1 month ago (Aug. 1, 2004)
Published Print 21 years, 1 month ago (Aug. 1, 2004)
Funders 0

None

@article{Acharya_2004, title={On boundary conditions and plastic strain-gradient discontinuity in lower-order gradient plasticity}, volume={52}, ISSN={0022-5096}, url={http://dx.doi.org/10.1016/j.jmps.2004.02.005}, DOI={10.1016/j.jmps.2004.02.005}, number={8}, journal={Journal of the Mechanics and Physics of Solids}, publisher={Elsevier BV}, author={Acharya, Amit and Tang, Huang and Saigal, Sunil and L. Bassani, John}, year={2004}, month=aug, pages={1793–1826} }