Crossref
journal-article
Elsevier BV
Journal of Computer and System Sciences (78)
References
33
Referenced
226
-
P. Auer, H. Burgsteiner, W. Maass, Reducing communication for distributed learning in neural networks, in: J.R. Dorronsoro (Ed.), Proceedings of the International Conference on Artificial Neural Networks—ICANN 2002, Lecture Notes in Computer Science, Vol. 2415, Berlin, Springer, 2002, pp. 123–128; see # 127 on http://www.igi.tugraz.at/maass/publications.html.
(
10.1007/3-540-46084-5_21
) -
N. Bertschinger, T. Natschläger, Real-time computation at the edge of chaos in recurrent neural networks, Neural Comput., in press.
(
10.1162/089976604323057443
) 10.1109/TCS.1985.1085649
/ IEEE Trans. Circuits Systems / Fading memory and the problem of approximating nonlinear operators with Volterra series by Boyd (1985)10.1016/0004-3702(91)90053-M
/ Artificial Intelligence / Intelligence without representation by Brooks (1991)10.1126/science.7863330
/ Science / Temporal information transformed into a spatial code by a neural network with realistic properties by Buonomano (1995){'key': '10.1016/j.jcss.2004.04.001_BIB6', 'series-title': 'Foundations of Modern Analysis', 'author': 'Dieudonne', 'year': '1969'}
/ Foundations of Modern Analysis by Dieudonne (1969)10.1126/science.287.5451.273
/ Science / Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex by Gupta (2000)-
S. Häusler, H. Markram, W. Maass, Perspectives of the high dimensional dynamics of neural microcircuits from the point of view of low dimensional readouts, Complexity (Special Issue on Complex Adaptive Systems) 8(4) (2003) 39–50; see # 137 on http://www.igi.tugraz.at/maass/publications.html.
(
10.1002/cplx.10089
) 10.1073/pnas.98.3.1282
/ Proc. Natl. Acad. Sci. USA / What is a moment? Transient synchrony as a collective mechanism for spatio-temporal integration by Hopfield (2001)- H. Jäger, The “echo state” approach to analysing and training recurrent neural networks, GMD Report 148, German National Research Center for Information Technology, 2001.
10.1126/science.1091277
/ Science / Harnessing nonlinearity: predicting chaotic systems and boosting wireless communication by Jäger (2004)10.1016/0167-2789(90)90064-V
/ Physica D / Computation at the edge of chaos by Langton (1990)-
R.A. Legenstein, H. Markram, W. Maass, Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons, Reviews in the Neurosciences (Special Issue on Neuroinformatics of Neural and Artificial Computation) 14(1–2) (2003) 5–19; see # 140 on http://www.igi.tugraz.at/maass/publications.html.
(
10.1515/REVNEURO.2003.14.1-2.5
) 10.1073/pnas.95.9.5323
/ Proc. Natl. Acad. Sci. USA / Differential signaling via the same axon of neocortical pyramidal neurons by Markram (1998){'key': '10.1016/j.jcss.2004.04.001_BIB15', 'series-title': 'Analysis of Physiological Systems: The White-Noise Approach|', 'author': 'Marmarelis', 'year': '1978'}
/ Analysis of Physiological Systems: The White-Noise Approach| by Marmarelis (1978)-
W. Maass, On the computational power of winner-take-all, Neural Comput. 12(11) (2000) 2519–2536; see # 113 on http://www.igi.tugraz.at/maass/publications.html.
(
10.1162/089976600300014827
) -
W. Maass, Paradigms for computing with spiking neurons, in: J.L. van Hemmen, J.D. Cowan, E. Domany (Eds.), Models of Neural Networks, Early Vision and Attention, Vol. 4, Springer, New York, 2002, pp. 373–402 (Chapter 9); see # 110 on http://www.igi.tugraz.at/maass/publications.html.
(
10.1007/978-0-387-21703-1_9
) -
W. Maass, T. Natschläger, A model for fast analog computation based on unreliable synapses, Neural Comput. 12(7) (2000) 1679–1704; see # 102 on http://www.igi.tugraz.at/maass/publications.html.
(
10.1162/089976600300015303
) -
W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states : a new framework for neural computation based on perturbations, Neural Comput. 14(11) (2002) 2531–2560; see # 130 on http://www.igi.tugraz.at/maass/publications.html.
(
10.1162/089976602760407955
) -
W. Maass, T. Natschläger, H. Markram, Computational models for generic cortical microcircuits, in: J. Feng (Ed.), Computational Neuroscience: A Comprehensive Approach, Chapman & Hall/CRC, Boca Raton, 2004, pp. 575–605 (Chapter 18); see # 149 on http://www.igi.tugraz.at/maass/publications.html.
(
10.1201/9780203494462.ch18
) -
W. Maass, E. Sontag, Analog neural nets with Gaussian or other common noise distribution cannot recognize arbitrary regular languages, Neural Comput. 11 (1999) 771–782; see # 95 on http://www.igi.tugraz.at/maass/publications.html.
(
10.1162/089976699300016656
) -
W. Maass, E.D. Sontag, Neural systems as nonlinear filters, Neural Comput. 12(8) (2000) 1743–1772; see # 107 on http://www.igi.tugraz.at/maass/publications.html.
(
10.1162/089976600300015123
) -
T. Natschläger, W. Maass, Spiking neurons and the induction of finite state machines, Theoret. Comput. Sci.; Spec. Issue Natural Comput. 287 (2002) 251–265; see # 136 on http://www.igi.tugraz.at/maass/publications.html.
(
10.1016/S0304-3975(02)00099-3
) 10.1007/BF00355455
/ Biol. Cybernet / On the representation of multi-input systems by Poggio (1980){'key': '10.1016/j.jcss.2004.04.001_BIB25', 'series-title': 'SPIKES: Exploring the Neural Code', 'author': 'Rieke', 'year': '1997'}
/ SPIKES: Exploring the Neural Code by Rieke (1997){'key': '10.1016/j.jcss.2004.04.001_BIB26', 'series-title': 'Real and Complex Analysis', 'author': 'Rudin', 'year': '1987'}
/ Real and Complex Analysis by Rudin (1987){'key': '10.1016/j.jcss.2004.04.001_BIB27', 'series-title': 'Nonlinear Systems Theory', 'author': 'Rugh', 'year': '1981'}
/ Nonlinear Systems Theory by Rugh (1981)10.1007/BF01952236
/ Multidimensional Systems Signal Process / Structure theorems for nonlinear systems by Sandberg (1991){'key': '10.1016/j.jcss.2004.04.001_BIB29', 'series-title': 'Models of Computation: Exploring the Power of Computing', 'author': 'Savage', 'year': '1998'}
/ Models of Computation: Exploring the Power of Computing by Savage (1998)10.1016/S0166-2236(02)02151-3
/ Trends Neurosci / Stereotypy in neocortical microcircuits by Silberberg (2002)-
E.D. Sontag, Neural networks for control, in: J.C.W.H.L. Trentelman (Ed.), Essay on Control: Perspectives in the Theory and its Applications, Birkhauser, Boston, 1993, pp. 339–380; online available from: http://www.math.rutgers.edu/~sontag/papers.html.
(
10.1007/978-1-4612-0313-1_10
) 10.1126/science.274.5293.1724
/ Science / Chaos in neuronal networks with balanced excitatory and inhibitory activity by van Vreeswijk (1996){'key': '10.1016/j.jcss.2004.04.001_BIB33', 'series-title': 'Statistical Learning Theory', 'author': 'Vapnik', 'year': '1998'}
/ Statistical Learning Theory by Vapnik (1998)
Dates
Type | When |
---|---|
Created | 21 years, 1 month ago (July 23, 2004, 10:53 a.m.) |
Deposited | 5 years, 5 months ago (April 2, 2020, 4:58 p.m.) |
Indexed | 1 day, 21 hours ago (Sept. 2, 2025, 6:37 a.m.) |
Issued | 20 years, 9 months ago (Dec. 1, 2004) |
Published | 20 years, 9 months ago (Dec. 1, 2004) |
Published Print | 20 years, 9 months ago (Dec. 1, 2004) |
@article{Maass_2004, title={On the computational power of circuits of spiking neurons}, volume={69}, ISSN={0022-0000}, url={http://dx.doi.org/10.1016/j.jcss.2004.04.001}, DOI={10.1016/j.jcss.2004.04.001}, number={4}, journal={Journal of Computer and System Sciences}, publisher={Elsevier BV}, author={Maass, Wolfgang and Markram, Henry}, year={2004}, month=dec, pages={593–616} }