Crossref
journal-article
Elsevier BV
International Journal of Machine Tools and Manufacture (78)
References
244
Referenced
398
-
Brinksmeier, E. and O. Riemer, Measurement of optical surfaces generated by diamond turning. Int. J. Mach. Tools Manuf. 1998. 38(5–6): p. 699-705.
(
10.1016/S0890-6955(97)00120-X
) - Taniguchi, N. On the basic concept of ‘nano-technology’. in: Proceedings of Production Engineering, Part-II, Japan Society of Precision Engineering 1974. Tokyo, Japan.
-
Taniguchi, N., Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann. Manuf. Technol., 1983. 32(2): p. 573-582.
(
10.1016/S0007-8506(07)60185-1
) - Shore, P. and P. Morantz, Ultra-precision: enabling our future. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 2012. 370(1973): p. 3993-4014.
-
Luo, X., S. Goel, and R.L. Reuben, A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide. J. Eur. Ceram. Soc., 2012. 32(12): p. 3423-3434.
(
10.1016/j.jeurceramsoc.2012.04.016
) -
Liu, X., R.E. DeVor, S.G. Kapoor, and K.F. Ehmann, The mechanics of machining at the microscale: assessment of the current state of the science. J. Manuf. Sci. Eng., 2004. 126(4): p. 666-678.
(
10.1115/1.1813469
) -
Yu, D.P., Y.S. Wong, and G.S. Hong, A novel method for determination of the subsurface damage depth in diamond turning of brittle materials. Int. J. Mach. Tools Manuf., 2011. 51(12): p. 918-927.
(
10.1016/j.ijmachtools.2011.08.007
) -
Jain, V.K., Magnetic field assisted abrasive based micro-/nano-finishing. J. Mater. Process. Technol., 2009. 209(20): p. 6022-6038.
(
10.1016/j.jmatprotec.2009.08.015
) -
Jain, N.K. and V.K. Jain, Modeling of material removal in mechanical type advanced machining processes: a state-of-art review. Int. J. Mach. Tools Manuf., 2001. 41(11): p. 1573-1635.
(
10.1016/S0890-6955(01)00010-4
) - Brinksmeier, E. and W. Preuss, Micro-machining. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 2012. 370(1973): p. 3973-3992.
-
Ezugwu, E.O., Key improvements in the machining of difficult-to-cut aerospace superalloys. Int. J. Mach. Tools Manuf., 2005. 45(12–13): p. 1353-1367.
(
10.1016/j.ijmachtools.2005.02.003
) -
Cai, M.B., X.P. Li, M. Rahman, and A.A.O. Tay, Crack initiation in relation to the tool edge radius and cutting conditions in nanoscale cutting of silicon. Int. J. Mach. Tools Manuf., 2007. 47(3–4): p. 562-569.
(
10.1016/j.ijmachtools.2006.05.006
) -
Seagal, M., Learning from silicon. Nature, 2012. 483: p. S43-S44.
(
10.1038/483S43a
) -
Suresh, P., P. Venkateswara Rao, and S. Deshmukh, A genetic algorithmic approach for optimization of surface roughness prediction model. Int. J. Mach. Tools Manuf., 2002. 42(6): p. 675-680.
(
10.1016/S0890-6955(02)00005-6
) -
Puttick, K.E., L.C. Whitmore, P. Zhdan, A.E. Gee, and C.L. Chao, Energy scaling transitions in machining of silicon by diamond. Tribol. Int., 1995. 28(6): p. 349-355.
(
10.1016/0301-679X(95)00019-Z
) -
Kovalchenko, A., Y. Gogotsi, V. Domnich, and A. Erdemir, Phase transformations in silicon under dry and lubricated sliding. Tribol. Trans., 2002. 45(3): p. 372-380.
(
10.1080/10402000208982562
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib17', 'series-title': 'on Ductile-regime diamond turning of germanium and silicon', 'author': 'Blake', 'year': '1988'}
/ on Ductile-regime diamond turning of germanium and silicon by Blake (1988)10.1115/1.2899676
/ J. Eng. Ind. / Ductile-regime grinding: a new technology for machining brittle materials by Bifano (1991)-
Scattergood, R.O., Blake, N., Ductile-regime machining of germanium and silicon. J. Am. Ceram. Soc., 1990. 73(4): p. 949-957.
(
10.1111/j.1151-2916.1990.tb05142.x
) -
Blackley, W.S. and R.O. Scattergood, Ductile-regime machining model for diamond turning of brittle materials. Precis. Eng., 1991. 13(2): p. 95-103.
(
10.1016/0141-6359(91)90500-I
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib21', 'series-title': 'Department of Mechanical and Aeronautical Engineering', 'first-page': '312', 'article-title': 'Ductile mode material removal of ceramics and semiconductors', 'author': 'Ravindra', 'year': '2011'}
/ Department of Mechanical and Aeronautical Engineering / Ductile mode material removal of ceramics and semiconductors by Ravindra (2011)-
Morris, J.C., D.L. Callahan, J. Kulik, J.A. Patten, and R.O. Scattergood, Origins of the ductile regime in single-point diamond turning of semiconductors. J. Am. Ceram. Soc., 1995. 78(8): p. 2015-2020.
(
10.1111/j.1151-2916.1995.tb08612.x
) -
Mylvaganam, K. and L.C. Zhang, Nanotwinning in monocrystalline silicon upon nanoscratching. Scr. Mater., 2011. 65(3): p. 214-216.
(
10.1016/j.scriptamat.2011.04.012
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib24', 'series-title': 'Mechanical Engineering', 'first-page': '1', 'article-title': 'An atomistic investigation on the nanometric cutting mechanism of hard, brittle materials', 'author': 'Goel', 'year': '2013'}
/ Mechanical Engineering / An atomistic investigation on the nanometric cutting mechanism of hard, brittle materials by Goel (2013)- King, R.F. and D. Tabor, The strength properties and frictional behavior of brittle solids. 1954, Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci.. p. 225-238, vol. 223 no. 1153.
-
Bridgman, P.W. and I. Simon, Effects of very high pressures on glass. J. Appl. Phys., 1953. 24(4): p. 405-413.
(
10.1063/1.1721294
) -
Lawn, B. and R. Wilshaw, Indentation fracture: principles and applications. J. Mater. Sci., 1975. 10(6): p. 1049-1081.
(
10.1007/BF00823224
) -
Lawn, B.R. and D.B. Marshall, Hardness, toughness, and brittleness: an indentation analysis. J. Am. Ceram. Soc., 1979. 62(7-8): p. 347-350.
(
10.1111/j.1151-2916.1979.tb19075.x
) -
Wang, M., W. Wang, and Z. Lu, Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study. Int. J. Adv. Manuf. Technol., 2012. 60(5): p. 473-485.
(
10.1007/s00170-011-3633-7
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib30', 'first-page': '26', 'article-title': 'Indentation of brittle materials, Microindentation Techniques in Materials Science and Engineering', 'volume': '889', 'author': 'Marshall', 'year': '1986', 'journal-title': 'ASTM STP'}
/ ASTM STP / Indentation of brittle materials, Microindentation Techniques in Materials Science and Engineering by Marshall (1986){'issue': '3', 'key': '10.1016/j.ijmachtools.2014.09.013_bib31', 'first-page': '445', 'article-title': 'Dependence of brittle-to-ductile transition on crystallographic direction in diamond turning of single-crystal silicon. Proceedings of the Institution of Mechanical Engineers', 'volume': '226', 'author': 'Jasinevicius', 'year': '2012', 'journal-title': 'Part B: Journal of Engineering Manufacture'}
/ Part B: Journal of Engineering Manufacture / Dependence of brittle-to-ductile transition on crystallographic direction in diamond turning of single-crystal silicon. Proceedings of the Institution of Mechanical Engineers by Jasinevicius (2012)10.1016/j.triboint.2014.07.003
/ Tribology International / On the cracks self-healing mechanism at ductile mode cutting of silicon by Kovalchenko (2014)-
Kulshreshtha, P.K., K.M. Youssef, and G. Rozgonyi, Nano-indentation: a tool to investigate crack propagation related phase transitions in PV silicon. Sol. Energy Mater. Sol. Cells, 2012. 96(0): p. 166-172.
(
10.1016/j.solmat.2011.09.053
) -
Arif, M., Z. Xinquan, M. Rahman, and S. Kumar, A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials. Int. J. Mach. Tools Manuf., 2013. 64(0): p. 114-122.
(
10.1016/j.ijmachtools.2012.08.005
) -
Nakasuji, T., S. Kodera, S. Hara, H. Matsunaga, N. Ikawa, and S. Shimada, Diamond turning of brittle materials for optical components. CIRP Ann. Manuf. Technol., 1990. 39(1): p. 89-92.
(
10.1016/S0007-8506(07)61009-9
) -
Inamura, T., N. Takezawa, Y. Kumaki, and T. Sata, On a possible mechanism of shear deformation in nanoscale cutting. CIRP Ann. Manuf. Technol., 1994. 43(1): p. 47-50.
(
10.1016/S0007-8506(07)62161-1
) -
Yan, J., Syoji, K., Kuriyagawa, T. and Suzuki, H., Ductile regime turning at large tool feed. J. Mater. Process. Technol., 2002. 121(2–3): p. 363-372.
(
10.1016/S0924-0136(01)01218-3
) -
Gilman, J.J., Insulator-metal transitions at microindentations. J. Mater. Res., 1992. 7: p. 535-538.
(
10.1557/JMR.1992.0535
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib39', 'series-title': 'MRS Spring Meeting', 'article-title': 'Metallization at microindentations', 'author': 'Gilman', 'year': '1992'}
/ MRS Spring Meeting / Metallization at microindentations by Gilman (1992)-
Gilman, J.J., Mechanism of shear-induced metallization. Czechoslov. J. Phys., 1995. 45(11): p. 913-919.
(
10.1007/BF01692009
) -
Goel, S., X. Luo, and R.L. Reuben, Shear instability of nanocrystalline silicon carbide during nanometric cutting. Appl. Phys. Lett., 2012. 100(23): p. 231902.
(
10.1063/1.4726036
) - Bouwelen Van, F.M., L.M. Brown, and J.E. Field, A new view on the mechanism of diamond polishing. Ind. Diam. Rev., 1997. 57(1): p. 21-25.
-
Arefin, S., X.P. Li, M.B. Cai, M. Rahman, K. Liu, and A. Tay, The effect of the cutting edge radius on a machined surface in the nanoscale ductile mode cutting of silicon wafer. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2007. 221(2): p. 213-220.
(
10.1243/09544054JEM568
) -
Cai, M.B., X.P. Li, and M. Rahman, Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation. Int. J. Mach. Tools Manuf., 2007. 47(1): p. 75-80.
(
10.1016/j.ijmachtools.2006.02.016
) -
Lucca, D.A., Y.W. Seo, and R.L. Rhorer, Energy dissipation and tool-workpiece contact in ultra-precision machining. Tribol. Trans., 1994. 37(3): p. 651-655.
(
10.1080/10402009408983343
) -
Leung, T.P., W.B. Lee, and X.M. Lu, Diamond turning of silicon substrates in ductile-regime. J. Mater. Process. Technol., 1998. 73(1–3): p. 42-48.
(
10.1016/S0924-0136(97)00210-0
) -
Marsh, E.R., E.J. Sommer, T.R.S. Deakyne, G.A. Kim, and J.A. Simonson, Detection of orientation-dependent, single-crystal diamond tool edge wear using cutting force sensors, while spin-turning silicon. Precis. Eng., 2010. 34(2): p. 253-258.
(
10.1016/j.precisioneng.2009.06.004
) -
Shibata, T., Fujii S., Makino, E. and Ikeda, M., Ductile-regime turning mechanism of single-crystal silicon. Precis. Eng., 1996. 18: p. 129-137.
(
10.1016/0141-6359(95)00054-2
) -
O’Connor, B.P., Marsh, E.R. and Couey, J.A., On the effect of crystallographic orientation on ductile material removal in silicon. Precis. Eng., 2005. 29: p. 124-132.
(
10.1016/j.precisioneng.2004.05.004
) -
Born, D.K. and W.A. Goodman, An empirical survey on the influence of machining parameters on tool wear in diamond turning of large single-crystal silicon optics. Precis. Eng., 2001. 25(4): p. 247-257.
(
10.1016/S0141-6359(00)00069-6
) - Ichida Y. Ductile mode maching of single crystal silicon using a single point diamond tool, in: Proceedings of the First International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology (EUSPEN). 1999. Bremen, Germany.
-
Buzio, R., C. Boragno, F. Biscarini, F.B. De Mongeot, and U. Valbusa, The contact mechanics of fractal surfaces. Nat. Mater., 2003. 2(4): p. 233-236.
(
10.1038/nmat855
) -
Bex, P.A., Diamond turning tools, Ind. Diam. Rev. 1975, p. 11-18.
(
10.1049/el:19750036
) -
Casey, M. and J. Wilks, Some experiments to study turning tools using the scanning electron microscope. Int. J. Mach. Tool Des. Res., 1976. 16(1): p. 13-22.
(
10.1016/0020-7357(76)90010-X
) - H.H. Hurt and D.L. Decker, Tribological considerations of the diamond single-point tool. Proc. SPIE Prod. Asp. Single-Point Mach. Opt., 1986. 508: p. 126–131.
- Ikawa, N., S. S., and M. H., Technology of diamond tool for ultraprecision metal cutting, Bull.: Jpn. Soc. Precis. Eng.. 1987. p. 233-238.
-
Yuan, Z.J., J.C. He, and Y.X. Yao, The optimum crystal plane of natural diamond tool for precision machining. CIRP Ann. Manuf. Technol., 1992. 41(1): p. 605-608.
(
10.1016/S0007-8506(07)61279-7
) -
Oomen, J.M. and J. Eisses, Wear of monocrystalline diamond tools during ultraprecision machining of nonferrous metals. Precis. Eng., 1992. 14(4): p. 206-218.
(
10.1016/0141-6359(92)90018-R
) -
Ikawa, N., S. Shimada, and H. Tsuwa, Microfracture of diamond as fine tool material. CIRP Ann. Manuf. Technol., 1982. 31(1): p. 71-74.
(
10.1016/S0007-8506(07)63271-5
) -
Komanduri, R., N. Chandrasekaran, and L.M. Raff, Molecular dynamics simulation of atomic-scale friction. Phys. Rev. B, 2000. 61(20): p. 14007-14019.
(
10.1103/PhysRevB.61.14007
) -
Lucca, D.A., Y.W. Seo, and R. Komanduri, Effect of tool edge geometry on energy dissipation in ultraprecision machining. CIRP Ann. Manuf. Technol., 1993. 42(1): p. 83-86.
(
10.1016/S0007-8506(07)62397-X
) -
Komanduri, R., N. Chandrasekaran, and L.M. Raff, Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear, 1998. 219(1): p. 84-97.
(
10.1016/S0043-1648(98)00229-4
) -
Komanduri, R., Some aspects of machining with negative rake tools simulating grinding. Int. J. Mach. Tool Des. Res., 1971. 11(3): p. 223-233.
(
10.1016/0020-7357(71)90027-8
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib64', 'series-title': 'Fundamentals of the Selection of Cutting Tool Geometry Parameters Geometry of Single-point Turning Tools and Drills', 'first-page': '127', 'author': 'Astakhov', 'year': '2010'}
/ Fundamentals of the Selection of Cutting Tool Geometry Parameters Geometry of Single-point Turning Tools and Drills by Astakhov (2010)-
Komanduri, R. and L. Raff, A review on the molecular dynamics simulation of machining at the atomic scale. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2001. 215(12): p. 1639-1672.
(
10.1177/095440540121501201
) -
Komanduri, R. and W.R. Reed Jr, Evaluation of carbide grades and a new cutting geometry for machining titanium alloys. Wear, 1983. 92(1): p. 113-123.
(
10.1016/0043-1648(83)90011-X
) -
Biddut A.Q., Rahman M., Neo K.S., R. K.M.R., M. Sawa, and Y. Maeda, Performance of single crystal diamond tools with different rake angles during micro-grooving on electroless nickel plated die materials. Int. J. Adv. Manuf. Technol., 2007. 33(0): p. 891-899.
(
10.1007/s00170-006-0535-1
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib68', 'series-title': 'An empirical survey on the influence of machining parameters on tool wear in diamond turning of large single crystal silicon optics—Paper prepared for submission to ASPE 14th Annual meeting at Monterey, CA.', 'author': 'Krulewich', 'year': '1999'}
/ An empirical survey on the influence of machining parameters on tool wear in diamond turning of large single crystal silicon optics—Paper prepared for submission to ASPE 14th Annual meeting at Monterey, CA. by Krulewich (1999)-
Samuels Leonard E., The Mechanisms of Abrasive Machining. Sci. Am., 1978. 239(5): p. 132.
(
10.1038/scientificamerican1178-132
) -
Patten, J.A. and W. Gao, Extreme negative rake angle technique for single point diamond nano-cutting of silicon. Precis. Eng., 2001. 25(2): p. 165-167.
(
10.1016/S0141-6359(00)00072-6
) -
Patten, J., W. Gao, and K. Yasuto, Ductile regime nanomachining of single-crystal silicon carbide. J. Manuf. Sci. Eng., 2005. 127(3): p. 522-532.
(
10.1115/1.1949614
) -
Durazo-Cardenas, I., P. Shore, X. Luo, T. Jacklin, S.A. Impey, and A. Cox, 3D characterisation of tool wear whilst diamond turning silicon. Wear, 2007. 262(3–4): p. 340-349.
(
10.1016/j.wear.2006.05.022
) -
Fang, F.Z. and V.C. Venkatesh, Diamond cutting of silicon with nanometric finish. CIRP Ann. Manuf. Technol., 1998. 47(1): p. 45-49.
(
10.1016/S0007-8506(07)62782-6
) -
Yan, J., T. Asami, H. Harada, and T. Kuriyagawa, Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Ann. Manuf. Technol., 2012. 61(1): p. 131-134.
(
10.1016/j.cirp.2012.03.070
) - Komanduri, R., Chandrasekaran, N., L.M. Raff, Molecular dynamics simulation of the nanometric cutting of silicon. Philos. Mag. Part B, 2001. 81(12): p. 1989-2019.
-
Lai, M., X.D. Zhang, and F.Z. Fang, Study on critical rake angle in nanometric cutting. Appl. Phys. A, 2012. 108(4): p. 809-818.
(
10.1007/s00339-012-6973-8
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib77', 'series-title': 'The Art of Molecular Dynamics Simulation', 'author': 'Rapaport', 'year': '2004'}
/ The Art of Molecular Dynamics Simulation by Rapaport (2004){'key': '10.1016/j.ijmachtools.2014.09.013_bib78', 'first-page': '27', 'volume': '1208', 'author': 'Alder', 'year': '1957', 'journal-title': 'J. Chem. Phys.'}
/ J. Chem. Phys. by Alder (1957)-
Gracie, R. and T. Belytschko, An adaptive concurrent multiscale method for the dynamic simulation of dislocations. Int. J. Numer. Methods Eng., 2011. 86(4–5): p. 575-597.
(
10.1002/nme.3112
) -
Oskay, C. and J. Fish, Fatigue life prediction using 2-scale temporal asymptotic homogenization. Int. J. Numer. Methods Eng., 2004. 61(3): p. 329-359.
(
10.1002/nme.1069
) -
Kerfriden, P., J.C. Passieux, and S.P.A. Bordas, Local/global model order reduction strategy for the simulation of quasi-brittle fracture. Int. J. Numer. Methods Eng., 2012. 89(2): p. 154-179.
(
10.1002/nme.3234
) -
Psakhie, S.G., Y. Horie, S.Y. Korostelev, A.Y. Smolin, A.I. Dmitriev, E.V. Shilko, and S.V. Alekseev, Method of movable cellular automata as a tool for simulation within the framework of mesomechanics. Russ. Phys. J., 1995. 38(11): p. 1157-1168.
(
10.1007/BF00559396
) -
Tan, Y., D. Yang, and Y. Sheng, Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC. J. Eur. Ceram. Soc., 2009. 29(6): p. 1029-1037.
(
10.1016/j.jeurceramsoc.2008.07.060
) -
Pen, H.M., Y.C. Liang, X.C. Luo, Q.S. Bai, S. Goel, and J.M. Ritchie, Multiscale simulation of nanometric cutting of single crystal copper and its experimental validation. Comput. Mater. Sci., 2011. 50(12): p. 3431-3441.
(
10.1016/j.commatsci.2011.07.005
) -
Jiwang, Y., Z. Hongwei, and K. Tsunemoto, Effects of tool edge radius on ductile machining of silicon: an investigation by FEM. Semicond. Sci. Technol., 2009. 24(7): p. 075018.
(
10.1088/0268-1242/24/7/075018
) -
Patten, J. and J. Jacob, Comparison between numerical simulations and experiments for single-point diamond turning of single-crystal silicon carbide. J. Manuf. Process., 2008. 10: p. 28-33.
(
10.1016/j.jmapro.2008.08.001
) -
Aly, M.F., E. Ng, S.C. Veldhuis, and M.A. Elbestawi, Prediction of cutting forces in the micro-machining of silicon using a “hybrid molecular dynamic-finite element analysis” force model. Int. J. Mach. Tools Manuf., 2006. 46(14): p. 1727-1739.
(
10.1016/j.ijmachtools.2005.12.008
) - Belak, J.F. and I.F. Stowers, A molecular dynamics model of orthogonal cutting process. Proc. Am. Soc. Precis. Eng. Annu. Conf., 1990: p. 76-79.
-
Ikawa N., Shimada S. and Tanaka H. Minimum thickness of cut in micromachining. Nanotechnology, 1992. 1(3): p. 6-9.
(
10.1088/0957-4484/3/1/002
) - Voter, A.F. and J.D. Kress, Atomistic Simulation of Diamond-Tip Machining of Nanoscale Features. in Principles of Cutting Mechanics: Applications of Ultra-Precision Machining and Grinding, 1993 Spring Topical Meeting 1993. Tucson, AZ, USA: ASPE Proceedings.
- Inamura, T., S. Shimada, N. Takezawa, and N. Nakahara, Brittle/ductile transition phenomena observed in computer simulations of machining defect-free monocrystalline silicon. CIRP Annals-Manuf. Technol., 1997. 46(1): p. 31-34.
- Rentsch, R. Influence of crystal orientation on the nanomeric cutting process. in Proceedings of the First International Euspen Conference. 1999. Bremen, Germany.
- Belak J., Stowers I.F. and Boercker D.B. Simulation of diamond turning of silicon surfaces. Proceedings of 7th American Society Precision Engineering Annual conference, 1992: pp. 76–79.
-
Nozaki, T., M. Doyama, Y. Kogure, and T. Yokotsuka, Micromachining of pure silicon by molecular dynamics. Thin Solid Films, 1998. 334(1–2): p. 221-224.
(
10.1016/S0040-6090(98)01148-1
) -
Shimada, S., N. Ikawa, T. Inamura, N. Takezawa, H. Ohmori, and T. Sata, Brittle–ductile transition phenomena in microindentation and micromachining. CIRP Ann. Manuf. Technol., 1995. 44(1): p. 523-526.
(
10.1016/S0007-8506(07)62377-4
) -
Komanduri, R., N. Chandrasekaran, and L.M. Raff, Molecular dynamics simulation of the nanometric cutting of silicon. Philos. Mag. Part B, 2001. 81(12): p. 1989-2019.
(
10.1080/13642810108208555
) - Zhang, L.C. and K. Mylvaganam, Nano-tribological analysis by molecular dynamics simulation—a review. J. Comput. Theoret. Nanosci., 2006. 3(2): p. 167-188.
-
Kovalchenko, A., Studies of the ductile mode of cutting brittle materials (A review). J. Superhard Mater., 2013. 35(5): p. 259-276.
(
10.3103/S1063457613050018
) -
Balamane, H., T. Halicioglu, and W.A. Tiller, Comparative study of silicon empirical interatomic potentials. Phys. Rev. B, 1992. 46(4): p. 2250-2279.
(
10.1103/PhysRevB.46.2250
) -
Plimpton, S.J. and A.P. Thompson, Computational aspects of many-body potentials (10.1557/mrs.2012.96). MRS Bull., 2012. 37: p. 513-521.
(
10.1557/mrs.2012.96
) -
Daw, M.S. and M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B, 1984. 29(12): p. 6443-6453.
(
10.1103/PhysRevB.29.6443
) -
Stillinger, F.H. and T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 1985. 31(8): p. 5262-5271.
(
10.1103/PhysRevB.31.5262
) -
Stillinger, F.H. and T.A. Weber, Erratum: computer simulation of local order in condensed phases of silicon [Phys. Rev. B 31, 5262 (1985)]. Phys. Rev. B, 1986. 33(2): p. 1451-1451.
(
10.1103/PhysRevB.33.1451
) -
Berendsen, H.J.C., J.R. Grigera, and T.P. Straatsma, The missing term in effective pair potentials. J. Phys. Chem., 1987. 91(24): p. 6269-6271.
(
10.1021/j100308a038
) -
Tersoff, J., New empirical approach for the structure and energy of covalent systems. Phys. Rev. B, 1988. 37(12): p. 6991.
(
10.1103/PhysRevB.37.6991
) -
Tersoff, J., Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B, 1988. 38(14): p. 9902.
(
10.1103/PhysRevB.38.9902
) -
Tersoff, J., Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B, 1989. 39(8): p. 5566.
(
10.1103/PhysRevB.39.5566
) -
Tersoff, J., Erratum: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B, 1990. 41(5): p. 3248.
(
10.1103/PhysRevB.41.3248.2
) -
Tersoff, J., Carbon defects and defect reactions in silicon. Phys. Rev. Lett., 1990. 64(15): p. 1757.
(
10.1103/PhysRevLett.64.1757
) -
Tersoff, J., Chemical order in amorphous silicon carbide. Phys. Rev. B, 1994. 49(23): p. 16349.
(
10.1103/PhysRevB.49.16349
) -
Agrawal, P.M., L.M. Raff, and R. Komanduri, Monte Carlo simulations of void-nucleated melting of silicon via modification in the Tersoff potential parameters. Phys. Rev. B, 2005. 72(12): p. 125206.
(
10.1103/PhysRevB.72.125206
) -
Devanathan, R., T. Diaz de la Rubia, and W.J. Weber, Displacement threshold energies in β-SiC. J. Nucl. Mater., 1998. 253(1–3): p. 47-52.
(
10.1016/S0022-3115(97)00304-8
) -
Kumagai, T., S. Izumi, S. Hara, and S. Sakai, Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation. Comput. Mater. Sci., 2007. 39(2): p. 457-464.
(
10.1016/j.commatsci.2006.07.013
) -
Bazant, M.Z., E. Kaxiras, and J. Justo, Environment-dependent interatomic potential for bulk silicon. Phys. Rev. B, 1997. 56(14): p. 8542.
(
10.1103/PhysRevB.56.8542
) -
Lucas, G., M. Bertolus, and L. Pizzagalli, An environment-dependent interatomic potential for silicon carbide: calculation of bulk properties, high-pressure phases, point and extended defects, and amorphous structures. J. Phys.: Condens. Matter, 2010. 22(3): p. 035802.
(
10.1088/0953-8984/22/3/035802
) -
Baskes, M.I., J.S. Nelson, and A.F. Wright, Semiempirical modified embedded-atom potentials for silicon and germanium. Phys. Rev. B, 1989. 40(9): p. 6085-6100.
(
10.1103/PhysRevB.40.6085
) -
Brenner, D.W., Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B, 1990. 42(15): p. 9458-9471.
(
10.1103/PhysRevB.42.9458
) -
Stuart, S.J., A.B. Tutein, and J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys., 2000. 112(14): p. 6472-6486.
(
10.1063/1.481208
) -
van Duin, A.C.T., S. Dasgupta, F. Lorant, and W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A, 2001. 105(41): p. 9396-9409.
(
10.1021/jp004368u
) -
Erhart, P. and K. Albe, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys. Rev. B, 2005. 71(3): p. 035211.
(
10.1103/PhysRevB.71.035211
) -
Yu, J., S.B. Sinnott, and S.R. Phillpot, Charge optimized many-body potential for the Si/SiO2 system. Phys. Rev. B, 2007. 75(8): p. 085311.
(
10.1103/PhysRevB.75.085311
) -
Zhou, X.W. and F.P. Doty, Embedded-ion method: an analytical energy-conserving charge-transfer interatomic potential and its application to the La–Br system. Phys. Rev. B, 2008. 78(22): p. 224307.
(
10.1103/PhysRevB.78.224307
) -
Bartók, A.P., M.C. Payne, R. Kondor, and G. Csányi, Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett., 2010. 104(13): p. 136403.
(
10.1103/PhysRevLett.104.136403
) -
de Brito Mota, F., J.F. Justo, and A. Fazzio, Structural properties of amorphous silicon nitride. Phys. Rev. B, 1998. 58(13): p. 8323.
(
10.1103/PhysRevB.58.8323
) -
Matsunaga, K. and Y. Iwamoto, Molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron. J. Am. Ceram. Soc., 2001. 84(10): p. 2213-2219.
(
10.1111/j.1151-2916.2001.tb00990.x
) -
Matsunaga, K., C. Fisher, and H. Matsubara, Tersoff potential parameters for simulating cubic boron carbonitrides. Jpn. J. Appl. Phys., 2000. 39: p. L48-L51.
(
10.1143/JJAP.39.L48
) -
Pastewka, L., A. Klemenz, P. Gumbsch, and M. Moseler, Screened empirical bond-order potentials for Si–C. Phys. Rev. B, 2013. 87(20): p. 205410.
(
10.1103/PhysRevB.87.205410
) -
Pastewka, L., P. Pou, R. Pérez, P. Gumbsch, and M. Moseler, Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys. Rev. B, 2008. 78(16): p. 161402.
(
10.1103/PhysRevB.78.161402
) -
Ikawa, N., S. Shimada, H. Tanaka, and G. Ohmori, An atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning. CIRP Ann. Manuf. Technol., 1991. 40(1): p. 551-554.
(
10.1016/S0007-8506(07)62051-4
) -
Nordlund, K., J. Keinonen, and T. Mattila, Formation of ion irradiation induced small-scale defects on graphite surfaces. Phys. Rev. Lett., 1996. 77(4): p. 699.
(
10.1103/PhysRevLett.77.699
) -
Goel, S., A topical review on the current understanding on the diamond machining of silicon carbide. J. Phys. D: Appl. Phys., 2014. 47(24): p. 243001.
(
10.1088/0022-3727/47/24/243001
) -
Goel, S., A. Stukowski, X. Luo, A. Agrawal, and R.L. Reuben, Anisotropy of single-crystal 3C–SiC during nanometric cutting. Modell. Simul. Mater. Sci. Eng., 2013. 21(6): p. 065004.
(
10.1088/0965-0393/21/6/065004
) -
Zhang, Z.G., F.Z. Fang, X.T. Hu, and C.K. Sun, Molecular dynamics study on various nanometric cutting boundary conditions. J. Vac. Sci. Technol. B, 2009. 27(3): p. 1355-1360.
(
10.1116/1.3049513
) -
Goel, S., X. Luo, and R.L. Reuben, Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol. Int., 2013. 57(0): p. 272-281.
(
10.1016/j.triboint.2012.06.027
) -
Pizani, P.S., R. Jasinevicius, J.G. Duduch, and A.J.V. Porto, Ductile and brittle modes in single-point-diamond-turning of silicon probed by Raman scattering. J. Mater. Sci. Lett., 1999. 18(14): p. 1185-1187.
(
10.1023/A:1006694310171
) -
Stukowski, A., Structure identification methods for atomistic simulations of crystalline materials. Modell. Simul. Mater. Sci. Eng., 2012. 20(4): p. 045021.
(
10.1088/0965-0393/20/4/045021
) -
Cheong, W.C.D. and L.C. Zhang, Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology, 2000. 11(3): p. 173.
(
10.1088/0957-4484/11/3/307
) -
Ackland, G.J. and A.P. Jones, Applications of local crystal structure measures in experiment and simulation. Phys. Rev. B, 2006. 73(5): p. 054104.
(
10.1103/PhysRevB.73.054104
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib139', 'series-title': 'on Molecular dynamics simulations of adhesion and nanoindentation of Gallium Arsenide, in The Department of Physics and Astronomy', 'author': 'Francis Brent Neal', 'year': '2002'}
/ on Molecular dynamics simulations of adhesion and nanoindentation of Gallium Arsenide, in The Department of Physics and Astronomy by Francis Brent Neal (2002)-
Goel, S., X. Luo, R.L. Reuben, and H. Pen, Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon. Wear, 2012. 284–285(0): p. 65-72.
(
10.1016/j.wear.2012.02.010
) -
Pei, Q.X., C. Lu, and H.P. Lee, Large scale molecular dynamics study of nanometric machining of copper. Comput. Mater. Sci., 2007. 41(2): p. 177-185.
(
10.1016/j.commatsci.2007.04.008
) -
Kelchner, C.L., S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B, 1998. 58(17): p. 11085.
(
10.1103/PhysRevB.58.11085
) -
Goel, S., Rashid, W. B., Luo, X., Agrawal, A., & Jain, V. K. (2014). A theoretical assessment of surface defect machining and hot machining of nanocrystalline silicon carbide. Journal of Manufacturing Science and Engineering, 136(2), 021015
(
10.1115/1.4026297
) -
Komanduri, R., N. Chandrasekaran, and L.M. Raff, MD simulation of nanometric cutting of single crystal aluminum–effect of crystal orientation and direction of cutting. Wear, 2000. 242(1–2): p. 60-88.
(
10.1016/S0043-1648(00)00389-6
) -
Pastewka, L., S. Moser, P. Gumbsch, and M. Moseler, Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater., 2011. 10(1): p. 34-38.
(
10.1038/nmat2902
) -
Uddin, M.S., K.H.W. Seah, X.P. Li, M. Rahman, and K. Liu, Effect of crystallographic orientation on wear of diamond tools for nano-scale ductile cutting of silicon. Wear, 2004. 257(7-8): p. 751-759.
(
10.1016/j.wear.2004.03.012
) 10.1063/1.2781324
/ J. Appl. Phys. / Multimillion-atom nanoindentation simulation of crystalline silicon carbide: orientation dependence and anisotropic pileup by Chen (2007)-
Wang, C., Cheng, K., Nelson, N., Sawangsri, W. and Rakowski, R. (2014). "Cutting force–based analysis and correlative observations on the tool wear in diamond turning of single-crystal silicon." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 10.1177/0954405414543316
(
10.1177/0954405414543316
) -
Zykova-Timan, T., D. Ceresoli, and E. Tosatti, Peak effect versus skating in high-temperature nanofriction. Nat. Mater., 2007. 6(3): p. 230-234.
(
10.1038/nmat1836
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib150', 'series-title': 'High Pressure Surface Science and Engineering', 'first-page': '639', 'article-title': 'Ductile regime machining of semiconductors and ceramics', 'author': 'Patten', 'year': '2003'}
/ High Pressure Surface Science and Engineering / Ductile regime machining of semiconductors and ceramics by Patten (2003){'issue': '1', 'key': '10.1016/j.ijmachtools.2014.09.013_bib151', 'first-page': '1', 'article-title': 'Phase transformations in silicon under contact loading', 'volume': '3', 'author': 'Domnich', 'year': '2002', 'journal-title': 'Reviews on Advanced Materials Science (Russia)'}
/ Reviews on Advanced Materials Science (Russia) / Phase transformations in silicon under contact loading by Domnich (2002)-
Zarudi, I., L. Zhang, W. Cheong, and T. Yu, The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters. Acta Mater., 2005. 53(18): p. 4795-4800.
(
10.1016/j.actamat.2005.06.030
) -
Mylvaganam, K., L. Zhang, P. Eyben, J. Mody, and W. Vandervorst, Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification. Nanotechnology, 2009. 20(30): p. 305705.
(
10.1088/0957-4484/20/30/305705
) -
Trenkle, J.C., C.E. Packard, and C.A. Schuh, Hot nanoindentation in inert environments. Rev. Sci. Instrum., 2010. 81(7): p. 073901-13.
(
10.1063/1.3436633
) -
Gridneva, I.V., Y.V. Milman, and V.I. Trefilov, Phase transition in diamond-structure crystals during hardness measurements. Phys. Status Solidi A, 1972. 14(1): p. 177-182.
(
10.1002/pssa.2210140121
) -
Jamieson, J.C., Crystal structures at high pressures of metallic modifications of silicon and germanium. Science, 1963. 139(3556): p. 762-764.
(
10.1126/science.139.3556.762
) -
Jasinevicius, R.G., J.G. Duduch, L. Montanari, and P.S. Pizani, Phase transformation and residual stress probed by Raman spectroscopy in diamond-turned single crystal silicon. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2008. 222(9): p. 1065-1073.
(
10.1243/09544054JEM1161
) 10.1063/1.2133908
/ Appl. Phys. Lett. / Transmission electron microscopic observation of nanoindentations made on ductile-machined silicon wafers by Yan (2005)-
Ge, D., V. Domnich, and Y. Gogotsi, High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation. J. Appl. Phys., 2003. 93(5): p. 2418-2423.
(
10.1063/1.1539916
) -
Budnitzki, M. and M. Kuna, A thermomechanical constitutive model for phase transformations in silicon under pressure and contact loading conditions. Int. J. Solids Struct., 2012. 49(11): p. 1316-1324.
(
10.1016/j.ijsolstr.2012.02.004
) -
Vodenitcharova, T. and L. Zhang, A new constitutive model for the phase transformations in mono-crystalline silicon. Int. J. Solids Struct., 2004. 41(18): p. 5411-5424.
(
10.1016/j.ijsolstr.2004.04.025
) -
Smith, G., E. Tadmor, N. Bernstein, and E. Kaxiras, Multiscale simulations of silicon nanoindentation. Acta Mater., 2001. 49(19): p. 4089-4101.
(
10.1016/S1359-6454(01)00267-1
) -
Smith, G., E. Tadmor, and E. Kaxiras, Multiscale simulation of loading and electrical resistance in silicon nanoindentation. Phys. Rev. Lett., 2000. 84(6): p. 1260.
(
10.1103/PhysRevLett.84.1260
) -
Kim, D. and S. Oh, Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology, 2006. 17(9): p. 2259.
(
10.1088/0957-4484/17/9/031
) -
Wang, Y., S. Ruffell, K. Sears, A.P. Knights, J.E. Bradby, and J.S. Williams. Electrical properties of Si-XII and Si-III formed by nanoindentation. in Optoelectronic and Microelectronic Materials and Devices (COMMAD), 2010 Conference on. 2010.
(
10.1109/COMMAD.2010.5699682
) -
Jardret, V., H. Zahouani, J.L. Loubet, and T.G. Mathia, Understanding and quantification of elastic and plastic deformation during a scratch test. Wear, 1998. 218(1): p. 8-14.
(
10.1016/S0043-1648(98)00200-2
) -
Jasinevicius, R.G., J.G. Duduch, and P.S. Pizani, Structure evaluation of submicrometre silicon chips removed by diamond turning. Semicond. Sci. Technol., 2007. 22(5): p. 561.
(
10.1088/0268-1242/22/5/019
) -
Cahn, R.W., Metallic solid silicon. Nature, 1992. 357(6380): p. 645-646.
(
10.1038/357645a0
) -
Chrobak, D., N. Tymiak, A. Beaber, O. Ugurlu, W.W. Gerberich, and R. Nowak, Deconfinement leads to changes in the nanoscale plasticity of silicon. Nat. Nano, 2011. 6(8): p. 480-484.
(
10.1038/nnano.2011.118
) -
Cross, G.L.W., Silicon nanoparticles: isolation leads to change. Nat. Nano, 2011. 6(8): p. 467-468.
(
10.1038/nnano.2011.124
) -
Yury, G., Z. Guohui, K. Sang-Song, and C. Sabri, Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon. Semicond. Sci. Technol., 2001. 16(5): p. 345.
(
10.1088/0268-1242/16/5/311
) - Goel, S. and Agrawal, A. Effect of the crystal structure in influencing the material removal mechanism during nanomachining of silicon. Under review.
-
Goel, S., N.H. Faisal, X. Luo, J. Yan, A. Agrawal, Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J. Phys. D: Appl. Phys., 2014. 47(27): p. 275304.
(
10.1088/0022-3727/47/27/275304
) -
Deb, S.K., M. Wilding, M. Somayazulu, and P.F. McMillan, Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon. Nature, 2001. 414(6863): p. 528-530.
(
10.1038/35107036
) -
Yan, J., H. Takahashi, J.i. Tamaki, X. Gai, H. Harada, and J. Patten, Nanoindentation tests on diamond-machined silicon wafers. Appl. Phys. Lett., 2005. 86(18): p. 181913.
(
10.1063/1.1924895
) -
Wang, Y., J. Shi, and C. Ji, A numerical study of residual stress induced in machined silicon surfaces by molecular dynamics simulation. Appl. Phys. A, 2014. 115(4): p. 1263-1279.
(
10.1007/s00339-013-7977-8
) -
Li, M. and T. Xu, Topological and atomic scale characterization of grain boundary networks in polycrystalline and nanocrystalline materials. Prog. Mater. Sci., 2011. 56(6): p. 864-899.
(
10.1016/j.pmatsci.2011.01.011
) -
Sumitomo, T., H. Huang, and L. Zhou, Deformation and material removal in a nanoscale multi-layer thin film solar panel using nanoscratch. Int. J. Mach. Tools Manuf., 2011. 51(3): p. 182-189.
(
10.1016/j.ijmachtools.2010.11.012
) -
Wang, Z.Y. and K.P. Rajurkar, Wear of CBN tool in turning of silicon nitride with cryogenic cooling. Int. J. Mach. Tools Manuf., 1997. 37(3): p. 319-326.
(
10.1016/S0890-6955(96)00037-5
) -
Zong, W.J., Y.H. Huang, Y.L. Zhang, and T. Sun, Conservation law of surface roughness in single point diamond turning. Int. J. Mach. Tools Manuf., 2014. 84(0): p. 58-63.
(
10.1016/j.ijmachtools.2014.04.006
) -
Brinksmeier, E., J.T. Cammett, W. König, P. Leskovar, J. Peters, and H.K. Tönshoff, Residual stresses—measurement and causes in machining processes. CIRP Ann. Manuf. Technol., 1982. 31(2): p. 491-510.
(
10.1016/S0007-8506(07)60172-3
) -
Wong, C.J., Fracture and wear of diamond cutting tools. J. Eng. Mater. Technol., 1981. 103(4): p. 341-345.
(
10.1115/1.3225025
) -
Paul, E., C.J. Evans, A. Mangamelli, M.L. McGlauflin, and R.S. Polvani, Chemical aspects of tool wear in single point diamond turning. Precis. Eng., 1996. 18(1): p. 4-19.
(
10.1016/0141-6359(95)00019-4
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib184', 'series-title': 'Machining with Nanomaterials', 'first-page': '1', 'article-title': 'Machining brittle materials using nanostructured diamond tools,', 'author': 'Jackson', 'year': '2009'}
/ Machining with Nanomaterials / Machining brittle materials using nanostructured diamond tools, by Jackson (2009)-
Jasinevicius, R.G., J.G. Duduch, and A.J.V. Porto, Investigation on diamond turning of silicon crystal-generation mechanism of surface cut with worn tool. J. Braz. Soc. Mech. Sci., 2001. 23: p. 241-252.
(
10.1590/S0100-73862001000200010
) -
Li, X.P., T. He, and M. Rahman, Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer. Wear, 2005. 259(7-12): p. 1207-1214.
(
10.1016/j.wear.2004.12.020
) -
Khurshudov, A.G., K. Kato, and H. Koide, Wear of the AFM diamond tip sliding against silicon. Wear, 1997. 203–204: p. 22-27.
(
10.1016/S0043-1648(96)07447-9
) -
Yan, J., Syoji, Katsuo, Tamaki, Jun'ichi, Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear, 2003. 255(7–12): p. 1380-1387.
(
10.1016/S0043-1648(03)00076-0
) -
Wilks, J., Performance of diamonds as cutting tools for precision machining. Precis. Eng., 1980. 2(2): p. 57-70.
(
10.1016/0141-6359(80)90056-2
) -
Maekawa, K. and A. Itoh, Friction and tool wear in nano-scale machining—a molecular dynamics approach. Wear, 1995. 188(1-2): p. 115-122.
(
10.1016/0043-1648(95)06633-0
) -
Cheng, K., X. Luo, R. Ward, and R. Holt, Modeling and simulation of the tool wear in nanometric cutting. Wear, 2003. 255: p. 1427-1432.
(
10.1016/S0043-1648(03)00178-9
) -
Cai, M.B., X.P. Li, and M. Rahman, Study of the mechanism of groove wear of the diamond tool in nanoscale ductile mode cutting of monocrystalline silicon. J. Manuf. Sci. Eng., 2007. 129(2): p. 281-286.
(
10.1115/1.2673567
) -
Cai, M.B., X.P. Li, and M. Rahman, Characteristics of dynamic hard particles in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear. Wear, 2007. 263(7-12): p. 1459-1466.
(
10.1016/j.wear.2006.11.030
) -
Narulkar, R., S. Bukkapatnam, L.M. Raff, and R. Komanduri, Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput. Mater. Sci., 2009. 45(2): p. 358-366.
(
10.1016/j.commatsci.2008.10.007
) -
Wang, Z., Liang, Y., Chen, M., Tong, Z. and Chen, J. Analysis about diamond tool wear in nano-metric cutting of single crystal silicon using molecular dynamics method. Proc. SPIE 7655, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 76550O (October 06, 2010); 10.1117/12.866290.
(
10.1117/12.866290
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib196', 'series-title': 'Key Engineering Materials', 'article-title': 'Molecular dynamics simulation of plastic deformation of diamond at an elevated temperature', 'author': 'Fung', 'year': '2015'}
/ Key Engineering Materials / Molecular dynamics simulation of plastic deformation of diamond at an elevated temperature by Fung (2015)-
Beyers, R., Thermodynamic considerations in refractory metal–silicon–oxygen systems. J. Appl. Phys., 1984. 56(1): p. 147-152.
(
10.1063/1.333738
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib198', 'series-title': 'Reaction Kinetics and Structural Evolution for the Formation on Nanocrystalline Silicon Carbide via Carbothermal Reduction', 'author': 'Cheng', 'year': '2004'}
/ Reaction Kinetics and Structural Evolution for the Formation on Nanocrystalline Silicon Carbide via Carbothermal Reduction by Cheng (2004)-
Viscomi, F. and Himmel, L. Kinetic and mechanistic study on the formation of silicon carbide from silica flour and coke breeze,. J. Met., 1978(6): p. 21-24.
(
10.1007/BF03354371
) -
Weimer, A.W., Nilsen, K.J., Cochran, G.A., and Roach, R.P., Kinetics of carbothermal reduction synthesis of beta silicon carbide. AIChE J., 1993. 39(3): p. 493-502.
(
10.1002/aic.690390311
) - Pastewka, L., M. Mrovec, M. Moseler, and P. Gumbsch, Bond order potentials for fracture, wear, and plasticity. MRS Bull. Three Decades Many-Body Potentials Mater. Res., 2012. 37(5): p. 493-503.
{'key': '10.1016/j.ijmachtools.2014.09.013_bib202', 'first-page': '10', 'article-title': 'Diamonds are forever-or are they?', 'author': 'Fineberg', 'year': '2011', 'journal-title': 'Nat. Mater.'}
/ Nat. Mater. / Diamonds are forever-or are they? by Fineberg (2011)-
Rigney, D. and S. Karthikeyan, The evolution of tribomaterial during sliding: a brief introduction. Tribol. Lett., 2010. 39(1): p. 3-7.
(
10.1007/s11249-009-9498-3
) -
Zhang, Z., J. Yan, and T. Kuriyagawa, Study on tool wear characteristics in diamond turning of reaction-bonded silicon carbide. Int. J. Adv. Manuf. Technol., 2011. 57(1): p. 117-125.
(
10.1007/s00170-011-3289-3
) -
Albrecht, P., New developments in the theory of the metal-cutting process: Part I. The ploughing process in metal cutting. J. Eng. Ind., 1960. 82(4): p. 348-357.
(
10.1115/1.3664242
) -
Woon, K.S., M. Rahman, K.S. Neo, and K. Liu, The effect of tool edge radius on the contact phenomenon of tool-based micromachining. Int. J. Mach. Tools Manuf., 2008. 48(12–13): p. 1395-1407.
(
10.1016/j.ijmachtools.2008.05.001
) -
Gilman, J.J., Mechanochemistry. Science, 1996. 274(5284): p. 65-65.
(
10.1126/science.274.5284.65
) -
Zong, W.J., T. Sun, D. Li, K. Cheng, and Y.C. Liang, XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer. Int. J. Mach. Tools Manuf., 2008. 48(15): p. 1678-1687.
(
10.1016/j.ijmachtools.2008.06.008
) -
Goel, S., A. Stukowski, G. Goel, X. Luo, and R.L. Reuben, Nanotribology at high temperatures. Beilstein J. Nanotechnol., 2012. 3: p. 586-588.
(
10.3762/bjnano.3.68
) -
Goel, S., S.S. Joshi, G. Abdelal, and A. Agrawal, Molecular dynamics simulation of nanoindentation of Fe3C and Fe4C. Mater. Sci. Eng.: A, 2014. 597(0): p. 331-341.
(
10.1016/j.msea.2013.12.091
) -
Henriksson, K.O.E., C. Björkas, and K. Nordlund, Atomistic simulations of stainless steels: a many-body potential for the Fe–Cr–C system. J. Phys.: Condens. Matter, 2013. 25(44): p. 445401.
(
10.1088/0953-8984/25/44/445401
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib212', 'series-title': 'Mechanical Engineering.', 'article-title': 'Investigations on the mechanism of wear of single crystal diamond tool in nanometric cutting of iron using molecular dynamics and the development of generalised potential energy surfaces(GPES) based on ab initio calculations', 'author': 'Narulkar', 'year': '2009'}
/ Mechanical Engineering. / Investigations on the mechanism of wear of single crystal diamond tool in nanometric cutting of iron using molecular dynamics and the development of generalised potential energy surfaces(GPES) based on ab initio calculations by Narulkar (2009)-
Komanduri, R. and M.C. Shaw, Wear of synthetic diamond when grinding ferrous metals. Nature, 1975. 255(5505): p. 211-213.
(
10.1038/255211a0
) -
Ravindra, D., J. Patten, and R. Jacobsen, Hybrid laser ablation–single point diamond turning machining process for CVD–silicon carbide ceramics. Int. J. Manuf. Res., 2013. 8(3): p. 227-249.
(
10.1504/IJMR.2013.055241
) {'key': '10.1016/j.ijmachtools.2014.09.013_bib215', 'series-title': 'Semiconductor Machining at the Micro-Nano Scale', 'article-title': 'Numerical simulations and cutting experiments on single point diamond machining of semiconductors and ceramics', 'author': 'Patten', 'year': '2007'}
/ Semiconductor Machining at the Micro-Nano Scale / Numerical simulations and cutting experiments on single point diamond machining of semiconductors and ceramics by Patten (2007){'key': '10.1016/j.ijmachtools.2014.09.013_bib216', 'series-title': 'Silicon Carbide: New Materials, Production Methods and Application', 'first-page': '141', 'article-title': 'Chapter 4: Ductile regime material removal of silicon carbide(SiC)', 'author': 'Ravindra', 'year': '2011'}
/ Silicon Carbide: New Materials, Production Methods and Application / Chapter 4: Ductile regime material removal of silicon carbide(SiC) by Ravindra (2011)-
Rashid, W.B., S. Goel, X. Luo, and J.M. Ritchie, The development of a surface defect machining method for hard turning processes. Wear, 2013. 302(1–2): p. 1124-1135.
(
10.1016/j.wear.2013.01.048
) -
Rashid, W.B., S. Goel, X. Luo, and J.M. Ritchie, An experimental investigation for the improvement of attainable surface roughness during hard turning process. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2013. 227(2): p. 338-342.
(
10.1177/0954405412464217
) -
Bartarya, G. and Choudhury, S. K. (2014). "Influence of machining parameters on forces and surface roughness during finish hard turning of EN 31 steel." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 228(9): 1068-1080
(
10.1177/0954405413500492
) -
Brinksmeier, E. and R. Gläbe, Advances in precision machining of steel. CIRP Ann. Manuf. Technol., 2001. 50(1): p. 385-388.
(
10.1016/S0007-8506(07)62146-5
) -
Evans, C. and J.B. Bryan, Cryogenic diamond turning of stainless steel. CIRP Ann. Manuf. Technol., 1991. 40(1): p. 571-575.
(
10.1016/S0007-8506(07)62056-3
) -
Casstevens, J.M., Diamond turning of steel in carbon-saturated atmospheres. Precis. Eng., 1983. 5(1): p. 9-15.
(
10.1016/0141-6359(83)90063-6
) -
Brehl, D.E. and T.A. Dow, Review of vibration-assisted machining. Precis. Eng., 2008. 32(3): p. 153-172.
(
10.1016/j.precisioneng.2007.08.003
) -
Shamoto, E. and T. Moriwaki, Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting. CIRP Ann. Manuf. Technol., 1999. 48(1): p. 441-444.
(
10.1016/S0007-8506(07)63222-3
) -
Moriwaki, T. and E. Shamoto, Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann. Manuf. Technol., 1991. 40(1): p. 559-562.
(
10.1016/S0007-8506(07)62053-8
) -
Yan, J., Z. Zhang, and T. Kuriyagawa, Effect of nanoparticle lubrication in diamond turning of reaction-bonded SiC. Int. J. Autom. Technol., 2011. 5(3): p. 307-312.
(
10.20965/ijat.2011.p0307
) -
Inada, A., S. Min, and H. Ohmori, Microcutting of ferrous materials using diamond tool under ionized coolant with carbon particles. CIRP Ann. Manuf. Technol., 2011. 60(1): p. 97-100.
(
10.1016/j.cirp.2011.03.089
) -
Yan, J., Z. Zhang, and T. Kuriyagawa, Tool wear control in diamond turning of high-strength mold materials by means of tool swinging. CIRP Ann. Manuf. Technol., 2010. 59(1): p. 109-112.
(
10.1016/j.cirp.2010.03.067
) -
Tang, X., K. Nakamoto, K. Obata, and Y. Takeuchi, Ultraprecision micromachining of hard material with tool wear suppression by using diamond tool with special chamfer. CIRP Ann. Manuf. Technol., 2013. 62(1): p. 51-54.
(
10.1016/j.cirp.2013.03.094
) -
Zareena, A.R. and S.C. Veldhuis, Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium. J. Mater. Process. Technol., 2012. 212(3): p. 560-570.
(
10.1016/j.jmatprotec.2011.10.014
) -
Kawasegi, N., H. Sugimori, H. Morimoto, N. Morita, and I. Hori, Development of cutting tools with microscale and nanoscale textures to improve frictional behavior. Precis. Eng., 2009. 33(3): p. 248-254.
(
10.1016/j.precisioneng.2008.07.005
) -
Chang, W., J. Sun, X. Luo, J.M. Ritchie, and C. Mack, Investigation of microstructured milling tool for deferring tool wear. Wear, 2011. 271(9–10): p. 2433-2437.
(
10.1016/j.wear.2010.12.026
) -
Fujisaki, K., H. Yokota, N. Furushiro, Y. Yamagata, T. Taniguchi, R. Himeno, A. Makinouchi, and T. Higuchi, Development of ultra-fine-grain binderless cBN tool for precision cutting of ferrous materials. J. Mater. Process. Technol., 2009. 209(15–16): p. 5646-5652.
(
10.1016/j.jmatprotec.2009.05.023
) -
Goel, S., X. Luo, R.L. Reuben, and W.B. Rashid, Replacing diamond cutting tools with CBN for efficient nanometric cutting of silicon. Mater. Lett., 2012. 68(0): p. 507-509.
(
10.1016/j.matlet.2011.11.028
) -
Fang, F.Z., Y.H. Chen, X.D. Zhang, X.T. Hu, and G.X. Zhang, Nanometric cutting of single crystal silicon surfaces modified by ion implantation. CIRP Ann. Manuf. Technol., 2011. 60(1): p. 527-530.
(
10.1016/j.cirp.2011.03.057
) -
To, S., H. Wang, and E.V. Jelenković, Enhancement of the machinability of silicon by hydrogen ion implantation for ultra-precision micro-cutting. Int. J. Mach. Tools Manuf., 2013. 74(0): p. 50-55.
(
10.1016/j.ijmachtools.2013.07.005
) -
Jiwang, Y., S. Shin, I. Hiromichi, and I. Koji, Recovery of microstructure and surface topography of grinding-damaged silicon wafers by nanosecond-pulsed laser irradiation. Semicond. Sci. Technol., 2009. 24(10): p. 105018.
(
10.1088/0268-1242/24/10/105018
) -
Liang, Y., D. Li, Q. Bai, S. Wang, and M. Chen. Molecular Dynamics Simulation of Elliptical Vibration Cutting. in Nano/Micro Engineered and Molecular Systems, 2006. NEMS′06. 1st IEEE International Conference on. 2006: IEEE.
(
10.1109/NEMS.2006.334862
) -
Sun, J., X. Luo, W. Chang, J. Ritchie, J. Chien, and A. Lee, Fabrication of periodic nanostructures by single-point diamond turning with focused ion beam built tool tips. J. Micromech. Microeng., 2012. 22(11): p. 115014.
(
10.1088/0960-1317/22/11/115014
) -
Jayasena, B., C.D. Reddy, and S. Subbiah, Separation, folding and shearing of graphene layers during wedge-based mechanical exfoliation. Nanotechnology, 2013. 24(20): p. 205301.
(
10.1088/0957-4484/24/20/205301
) -
Shaw, M.C. and A. Vyas, Chip formation in the machining of hardened steel. CIRP Ann. Manuf. Technol., 1993. 42(1): p. 29-33.
(
10.1016/S0007-8506(07)62385-3
) -
Shaw, M.C. and A. Vyas, The mechanism of chip formation with hard turning steel. CIRP Ann. Manuf. Technol., 1998. 47(1): p. 77-82.
(
10.1016/S0007-8506(07)62789-9
) -
Danyluk, S. and R. Reaves, Influence of fluids on the abrasion of silicon by diamond. Wear, 1982. 77(1): p. 81-87.
(
10.1016/0043-1648(82)90047-3
) -
Rentsch, R. and I. Inasaki, Effects of fluids on the surface generation in material removal processes—molecular dynamics simulation. Cirp Ann. Manuf. Technol., 2006. 55(1): p. 601-604.
(
10.1016/S0007-8506(07)60492-2
)
Dates
Type | When |
---|---|
Created | 10 years, 10 months ago (Oct. 7, 2014, 11:49 p.m.) |
Deposited | 6 years ago (Aug. 15, 2019, 7:23 p.m.) |
Indexed | 1 day, 6 hours ago (Aug. 23, 2025, 1:11 a.m.) |
Issued | 10 years, 7 months ago (Jan. 1, 2015) |
Published | 10 years, 7 months ago (Jan. 1, 2015) |
Published Print | 10 years, 7 months ago (Jan. 1, 2015) |
Funders
2
International Research Fellowship account of Queen's University, Belfast
EPSRC
10.13039/501100000266
Engineering and Physical Sciences Research CouncilRegion: Europe
gov (National government)
Labels
4
- UKRI Engineering and Physical Sciences Research Council
- Engineering and Physical Sciences Research Council - UKRI
- Engineering & Physical Sciences Research Council
- EPSRC
Awards
1
- EP/K018345/1
@article{Goel_2015, title={Diamond machining of silicon: A review of advances in molecular dynamics simulation}, volume={88}, ISSN={0890-6955}, url={http://dx.doi.org/10.1016/j.ijmachtools.2014.09.013}, DOI={10.1016/j.ijmachtools.2014.09.013}, journal={International Journal of Machine Tools and Manufacture}, publisher={Elsevier BV}, author={Goel, Saurav and Luo, Xichun and Agrawal, Anupam and Reuben, Robert L.}, year={2015}, month=jan, pages={131–164} }