Crossref
journal-article
Elsevier BV
International Journal of Heat and Mass Transfer (78)
References
38
Referenced
70
{'issue': '1', 'key': '10.1016/j.ijheatmasstransfer.2015.10.045_b0005', 'first-page': '15', 'article-title': 'The copper oxide rectifier', 'volume': '7', 'author': 'Starr', 'year': '1936', 'journal-title': 'J. Appl. Phys.'}
/ J. Appl. Phys. / The copper oxide rectifier by Starr (1936)10.1016/0017-9310(69)90011-8
/ Int. J. Heat Mass Transfer / Thermal contact conductance by Cooper (1969)10.2514/3.9672
/ AIAA J. / Explanation of thermal rectification by Somers (1987)10.1002/pssa.2210370111
/ Phys. Status Solidi (a) / Heat flow rectification by Hudson (1976)10.1103/PhysRevLett.93.184301
/ Phys. Rev. Lett. / Thermal diode: rectification of heat flux by Li (2004)10.1115/1.3089552
/ J. Heat Transfer / Solid-state thermal rectification with existing bulk materials by Dames (2009)10.1103/PhysRevE.81.010103
/ Phys. Rev. E / Thermal diode utilizing asymmetric contacts to heat baths by Komatsu (2010)10.1063/1.3666818
/ Appl. Phys. Lett. / Planar jumping-drop thermal diodes by Boreyko (2011)10.1016/j.physleta.2012.03.045
/ Phys. Lett. A / Theoretical analysis of thermal rectification in a bulk Si/nanoporous Si device by Criado-Sancho (2012)10.1063/1.4829618
/ Appl. Phys. Lett. / Phase-change radiative thermal diode by Ben-Abdallah (2013)10.1016/j.ijheatmasstransfer.2014.02.016
/ Int. J. Heat Mass Transfer / Experimental evidence of the working principle of thermal diodes based on thermal stress and thermal contact conductance – thermal semiconductors by dos Santos Bernardes (2014)10.1038/ncomms6446
/ Nat. Commun. / A Photon Thermal Diode by Chen (2014)10.1016/j.cryogenics.2007.09.002
/ Cryogenics / Neon gas-gap heat switch by Catarino (2008){'key': '10.1016/j.ijheatmasstransfer.2015.10.045_b0070', 'first-page': '785', 'article-title': 'Cryogenic thermal diodes', 'volume': '504', 'author': 'Paulsen', 'year': '2000', 'journal-title': 'Space Technol. Appl. Int. Forum'}
/ Space Technol. Appl. Int. Forum / Cryogenic thermal diodes by Paulsen (2000)10.1016/S0038-092X(97)00046-7
/ Sol. Energy / Integrated solar collector–storage tank system with thermal diode by Mohamad (1997)10.1016/S0038-092X(97)00071-6
/ Sol. Energy / Performance of liquid convective diodes by Kołodziej (1997)10.1021/nl901231s
/ Nano Lett. / Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study by Hu (2009)10.1063/1.3247882
/ Appl. Phys. Lett. / Thermal rectification at water/functionalized silica interfaces by Hu (2009)10.1115/1.2910547
/ J. Heat Transfer / Thermal rectification in similar and dissimilar metal contacts by Stevenson (1991)10.2514/3.57643
/ J. Spacecraft Rockets / Development of a liquid-trap heat pipe thermal diode by Groll (1979)10.1016/S0378-7788(01)00090-1
/ Energy Build. / Characterisation of thermal diode panels for use in the cooling season in buildings by Varga (2002)10.1016/j.solener.2008.09.001
/ Sol. Energy / Effects of working fluids on the performance of a bi-directional thermodiode for solar energy utilization in buildings by Chun (2009)10.1016/j.ijthermalsci.2010.12.004
/ Int. J. Therm. Sci. / A review of thermal rectification observations and models in solid materials by Roberts (2011)10.1103/PhysRevLett.104.154301
/ Phys. Rev. Lett. / Thermal rectification through vacuum by Otey (2010)10.1002/pssa.2210470126
/ Phys. Status Solidi (a) / Heat flow asymmetry on a junction of quartz with graphite by Jeżowski (1978)10.1002/pssa.2210310130
/ Phys. Status Solidi (a) / Heat flow rectification in inhomogeneous GaAs by Marucha (1975)10.1063/1.3253712
/ Appl. Phys. Lett. / An oxide thermal rectifier by Kobayashi (2009)10.1088/0022-3727/3/9/316
/ J. Phys. D Appl. Phys. / A thermal rectifier by O’callaghan (1970)10.1243/JMES_JOUR_1975_017_037_02
/ J. Mech. Eng. Sci. / Thermal rectification due to distortions induced by heat fluxes across contacts between smooth surfaces by Jones (1975)10.1126/science.1132898
/ Science / Solid-state thermal rectifier by Chang (2006)10.1103/PhysRevLett.88.094302
/ Phys. Rev. Lett. / Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier by Terraneo (2002)10.1103/PhysRevLett.94.034301
/ Phys. Rev. Lett. / Spin-boson thermal rectifier by Segal (2005)10.1063/1.3567026
/ Appl. Phys. Lett. / Near-field radiative transfer based thermal rectification using doped silicon by Basu (2011)10.1016/j.vacuum.2009.03.021
/ Vacuum / Gas gap thermal switches using neon or hydrogen and sorption pump by Catarino (2009)10.1016/j.sna.2006.03.033
/ Sens. Actuators A / Fabrication and characterization of a thermal switch by Cho (2007)- M. Ando, K. Shinozaki, A. Okamoto, H. Sugita, T. Nohara, Development of mechanical heat switch for future space missions, in: 44th International Conference on Environmental Systems, 2014.
- T. Nast, G. Bell, C. Barnes, Development of gas gap cryogenic thermal switch, in: Advances in Cryogenic Engineering, vol. 27, 1982, pp. 1117–1124.
{'key': '10.1016/j.ijheatmasstransfer.2015.10.045_b0190', 'first-page': '731', 'article-title': 'A thermal switch for use at liquid helium temperature in space-borne cryogenic systems', 'volume': 'vol. 8', 'author': 'Duband', 'year': '1995'}
/ A thermal switch for use at liquid helium temperature in space-borne cryogenic systems by Duband (1995)
Dates
Type | When |
---|---|
Created | 9 years, 9 months ago (Nov. 10, 2015, 3:25 p.m.) |
Deposited | 6 years, 11 months ago (Sept. 17, 2018, 12:50 p.m.) |
Indexed | 3 weeks, 6 days ago (Aug. 2, 2025, 1:19 a.m.) |
Issued | 9 years, 6 months ago (Feb. 1, 2016) |
Published | 9 years, 6 months ago (Feb. 1, 2016) |
Published Print | 9 years, 6 months ago (Feb. 1, 2016) |
@article{Tso_2016, title={Solid-state thermal diode with shape memory alloys}, volume={93}, ISSN={0017-9310}, url={http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.10.045}, DOI={10.1016/j.ijheatmasstransfer.2015.10.045}, journal={International Journal of Heat and Mass Transfer}, publisher={Elsevier BV}, author={Tso, C.Y. and Chao, Christopher Y.H.}, year={2016}, month=feb, pages={605–611} }