Crossref
journal-article
Elsevier BV
Energy Conversion and Management (78)
References
65
Referenced
94
10.1016/j.enconman.2012.12.017
/ Energy Convers Manage / Performance measurements of monocrystalline silicon PV modules in South-eastern Italy by Congedo (2013)- De Giorgi MG, Congedo PM, Malvoni M, Tarantino M. Short-term power forecasting by statistical methods for photovoltaic plants in south Italy. In: 4th IMEKO TC19 symposium on environmental instrumentation and measurements: protection environment, climate changes and pollution control, June 3–4, Lecce, Italy; 2013. p 171–5.
10.1016/j.enconman.2009.10.034
/ Energy Convers Manage / An adaptive model for predicting of global, direct and diffuse hourly solar irradiance by Mellit (2010)10.1016/j.solener.2010.02.006
/ Sol Energy / A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy by Mellit (2010)10.1016/j.apenergy.2011.12.052
/ Appl Energy / Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems by Su (2012)10.1016/j.rser.2008.02.002
/ Renew Sustain Energy Rev / A review on the forecasting of wind speed and generated power by Lei (2009)10.1016/S0951-8339(02)00053-9
/ Mar Struct / Forecasting wind with neural networks by More (2003)10.1016/j.enconman.2005.10.010
/ Energy Convers Manage / Forecasting of electricity prices with neural networks by Gareta (2006)10.1016/j.enconman.2013.11.019
/ Energy Convers Manage / Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting by Ardakani (2014)- Nagi J, Yap KS, Tiong SK, Ahmend SK. Electrical power load forecasting using hybrid self-organizing maps and support data machine. In: Proc. of the 2nd international power engineering and optimization conference (PEOCO), June 4–5, Shah Alam, Malaysia; 2008. p. 51–56.
-
De Giorgi MG, Ficarella A, Russo MG. Short-term wind forecasting using artificial neural networks (ANNs). In: Second international conference on energy and sustainability, June 23–25, Bologna, Italy; 2009.
(
10.2495/ESU090181
) 10.1016/j.enconman.2014.02.017
/ Energy Convers Manage / Wind speed estimation using multilayer perceptron by Velo (2014)10.1016/j.renene.2008.06.010
/ Renewable Energy / Characterisation of Si-crystalline PV modules by artificial neural networks by Almonacid (2009)10.1016/j.renene.2009.05.020
/ Renewable Energy / Estimation of the energy of a PV generator using artificial neural network by Almonacid (2009)10.1016/j.energy.2010.10.028
/ Energy / Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. Artificial neural networks by Almonacid (2011)10.1016/S0038-092X(98)00032-2
/ Sol Energy / Short-term forecasting of wind speed and related electrical power by Alexiadis (1998)10.1016/j.apenergy.2009.12.013
/ Appl Energy / On comparing three artificial neural networks for wind speed forecasting by Li (2010)10.1016/j.ejor.2012.02.042
/ Eur J Oper Res / Forecasting wind speed with recurrent neural networks by Cao (2012)10.1016/S0960-1481(99)00125-1
/ Renewable Energy / A comparison of various forecasting techniques applied to mean hourly wind speed time series by Sfetsos (2000)10.1016/j.rser.2007.01.015
/ Renew Sust Energy Rev / A review on the young history of the wind power short-term prediction by Costa (2008)10.1016/j.enconman.2010.07.053
/ Energy Convers Manage / Very short-term wind speed prediction: a new artificial neural network-Markov chain model by Pourmousavi Kani (2011)10.1016/j.apenergy.2011.12.085
/ Appl Energy / A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module by Bonanno (2012)10.1016/j.enconman.2013.11.006
/ Energy Convers Manage / Classification of methods for annual energy harvesting calculations of photovoltaic generators by Rus-Casas (2014)10.1016/j.apenergy.2009.09.005
/ Appl Energy / The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria by Fadare (2010)10.1016/j.apenergy.2008.12.005
/ Appl Energy / Modelling of solar energy potential in Nigeria using an artificial neural network model by Fadare (2009)10.1109/60.556376
/ IEEE Trans Energy Conver / Wind power forecasting using advanced neural networks models by Kariniotakis (1996)10.1016/j.apenergy.2010.10.035
/ Appl Energy / Error analysis of short term wind power prediction models by De Giorgi (2011)-
Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system. In: Power Engineering Society General Meeting, 24–28 June, Tampa, FL; 2007. p. 1–6.
(
10.1109/ISAP.2007.4441657
) 10.1016/S0306-2619(02)00016-8
/ Appl Energy / Solar radiation estimation using artificial neural networks by Dorvlo (2002)10.1016/j.enconman.2013.07.003
/ Energy Convers Manage / Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models by Benmouiza (2013)10.1016/j.enconman.2012.11.010
/ Energy Conver Manage / Neural network based method for conversion of solar radiation data by Celik (2013)10.1016/j.egypro.2011.09.024
/ Energy Proc / Forecasting power output of PV grid connected system in Thailand without using solar radiation measurement by Chupong (2011){'key': '10.1016/j.enconman.2015.04.078_b0165', 'series-title': 'The nature of statistical learning theory', 'isbn-type': 'print', 'author': 'Vapnik', 'year': '1995', 'ISBN': 'https://id.crossref.org/isbn/9780387987804'}
/ The nature of statistical learning theory by Vapnik (1995){'year': '1998', 'series-title': 'Statistical learning theory (adaptive and learning systems for signal processing, communications and control series)', 'author': 'Vapnik', 'key': '10.1016/j.enconman.2015.04.078_b0170'}
/ Statistical learning theory (adaptive and learning systems for signal processing, communications and control series) by Vapnik (1998)10.1016/j.enconman.2005.06.013
/ Energy Convers Manage / Support vector machine based battery model for electric vehicles by Junping (2006)10.1016/j.enconman.2005.02.004
/ Energy Convers Manage / Support vector machines with simulated annealing algorithms in electricity load forecasting by Pai (2005){'issue': 'August', 'key': '10.1016/j.enconman.2015.04.078_b0185', 'first-page': '162', 'article-title': 'Performance evaluation of short term wind speed prediction techniques', 'volume': '8', 'author': 'Sreelakshmi', 'year': '2008', 'journal-title': 'IJCSNS Int J Comput Sci Network Secur'}
/ IJCSNS Int J Comput Sci Network Secur / Performance evaluation of short term wind speed prediction techniques by Sreelakshmi (2008)10.1016/j.renene.2003.11.009
/ Renewable Energy / Support vector machines for wind speed prediction by Mohandes (2004)10.1016/j.enconman.2013.06.034
/ Energy Convers Manage / Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration by Chen (2013)10.1016/j.renene.2010.06.024
/ Renewable Energy / Estimation of monthly solar radiation from measured temperature using support vector machines e a case study by Chen (2011)- Fonseca JGS, Oozeki T, Takashima T, Koshimizu G, Uchida Y, Ogimoto K. Photovoltaic power production forecasts with support vector regression: a study on the forecast horizon. In: 37th IEEE photovoltaic specialists conference, 19–24 June 2011. p. 2579–83.
10.1016/j.enconman.2008.01.008
/ Energy Convers Manage / Machine learning based switching model for electricity load forecasting by Fan (2008)10.1109/TPWRS.2005.860944
/ IEEE Trans Power Syst / Short-term load forecasting based on an adaptive hybrid method by Fan (2006){'year': '2002', 'series-title': 'Least squares support vector machines', 'author': 'Suykens', 'key': '10.1016/j.enconman.2015.04.078_b0220'}
/ Least squares support vector machines by Suykens (2002)10.1007/978-3-642-22194-1_56
/ Intell Decis Technol Smart Innov Syst Technol / Predicting of the short term wind speed by using a real valued genetic algorithm based least squared support data machine by Huang (2011)10.1016/j.enconman.2010.11.007
/ Energy Convers Manage / Fine tuning support vector machines for short-term wind speed forecasting by Zhou (2011)10.3390/en7085251
/ Energies / Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN) by De Giorgi (2014)10.1109/34.192463
/ IEEE Trans Pattern Anal Mach Intell / A theory for multiresolution signal decomposition: the wavelet representation by Mallat (1989)10.1016/j.energy.2011.05.006
/ Energy / Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods by De Giorgi (2011)10.1016/j.enconman.2013.07.013
/ Energy Convers Manage / Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme by Shayeghi (2013)10.1016/j.energy.2008.09.020
/ Energy / Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm by Amjady (2009)10.1016/j.enconman.2014.03.022
/ Energy Convers Manage / Expert energy management of a micro-grid considering wind energy uncertainty by Motevasel (2014)- Italian Authority for the Electricity Gas and Water, Resolution 522/14/R/eel. Disposizioni in materia di dispacciamento delle fonti rinnovabili non programmabili a seguito della sentenza del Consiglio di Stato. 2014. Sezione Sesta-9 giugno 2014, n. 2936.
10.1016/j.renene.2015.01.047
/ Renewable Energy / Energy storage for PV power plant dispatching by Delfanti (2015)-
De Giorgi MG, Congedo PM, Malvoni M. Photovoltaic power forecasting using statistical methods: impact of weather data. IET Science, Measurement and Technology. p. 1–8. doi: http://dx.doi.org/10.1049/iet-smt.2013.0135.
(
10.1049/iet-smt.2013.0135
) - http://supervisione.espe.it/fotovoltaicoWeb/index.htm.
{'key': '10.1016/j.enconman.2015.04.078_b0285', 'first-page': '475', 'article-title': 'Standardizing the performance evaluation of short-term wind power prediction models', 'volume': '29', 'author': 'Madsen', 'year': '2005', 'journal-title': 'Wind Energy'}
/ Wind Energy / Standardizing the performance evaluation of short-term wind power prediction models by Madsen (2005){'year': '2013', 'series-title': 'Solar energy forecasting and resource assessment', 'author': 'Carlos', 'key': '10.1016/j.enconman.2015.04.078_b0290'}
/ Solar energy forecasting and resource assessment by Carlos (2013){'issue': '2', 'key': '10.1016/j.enconman.2015.04.078_b0295', 'first-page': '177', 'article-title': 'On the uncertainty of wind power predictions – analysis of the forecast accuracy and statistical distribution of errors', 'volume': '127', 'author': 'Lange', 'year': '2005', 'journal-title': 'J SolEnergy Eng'}
/ J SolEnergy Eng / On the uncertainty of wind power predictions – analysis of the forecast accuracy and statistical distribution of errors by Lange (2005)10.1016/j.jhydrol.2003.12.033
/ J Hydrol / Comparison of static-feedforward and dynamic-feedback neural networks for rainfall–runoff modeling by Chiang (2004){'key': '10.1016/j.enconman.2015.04.078_b0305', 'first-page': '593', 'volume': 'vol. 1', 'author': 'Hecht-Nielsen', 'year': '1989'}
by Hecht-Nielsen (1989)-
Duffie JA, Beckman WA. Solar engineering of thermal processes. 4th ed; 2013. doi: http://dx.doi.org/10.1002/9781118671603.
(
10.1002/9781118671603
) - http://www.solaritaly.enea.it/StrDiagrammiSolari/X12Mesi1.php.
- https://www.mercatoelettrico.org/en/tools/Glossario.aspx.
10.1016/j.enconman.2014.01.052
/ Energy Convers Manage / Estimation of demand response to energy price signals in energy consumption behaviour in Beijing, China by He (2014)
Dates
Type | When |
---|---|
Created | 10 years, 3 months ago (May 15, 2015, 10:45 a.m.) |
Deposited | 3 years, 9 months ago (Oct. 30, 2021, 7:50 p.m.) |
Indexed | 2 weeks, 6 days ago (Aug. 7, 2025, 4:59 p.m.) |
Issued | 10 years ago (Aug. 1, 2015) |
Published | 10 years ago (Aug. 1, 2015) |
Published Print | 10 years ago (Aug. 1, 2015) |
@article{De_Giorgi_2015, title={Error analysis of hybrid photovoltaic power forecasting models: A case study of mediterranean climate}, volume={100}, ISSN={0196-8904}, url={http://dx.doi.org/10.1016/j.enconman.2015.04.078}, DOI={10.1016/j.enconman.2015.04.078}, journal={Energy Conversion and Management}, publisher={Elsevier BV}, author={De Giorgi, Maria Grazia and Congedo, Paolo Maria and Malvoni, Maria and Laforgia, Domenico}, year={2015}, month=aug, pages={117–130} }