Crossref journal-article
Elsevier BV
Data & Knowledge Engineering (78)
Bibliography

Birant, D., & Kut, A. (2007). ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data & Knowledge Engineering, 60(1), 208–221.

Authors 2
  1. Derya Birant (first)
  2. Alp Kut (additional)
References 31 Referenced 1,068
  1. 10.1023/A:1009800916313 / GeoInformatica, Springer / Survey of spatio-temporal databases by Abraham (1999)
  2. M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: Ordering points to identify the clustering structure, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Philadelphia, PA, 1999, pp. 49–60. (10.1145/304181.304187)
  3. 10.1007/BF02948834 / Journal of Computer Science and Technology / Approaches for scaling DBSCAN algorithm to large spatial database by Aoying (2000)
  4. 10.1023/A:1008729828172 / Journal of Intelligent Information Systems (JIIS), Springer / Multidimensional index structures in relational databases by Böhm (2000)
  5. M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996, pp. 226–231.
  6. {'issue': '1', 'key': '10.1016/j.datak.2006.01.013_bib6', 'first-page': '18', 'article-title': 'Clustering for mining in large spatial databases', 'volume': '12', 'author': 'Ester', 'year': '1998', 'journal-title': 'KI-Journal (Artificial Intelligence)'} / KI-Journal (Artificial Intelligence) / Clustering for mining in large spatial databases by Ester (1998)
  7. M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, X. Xu, Incremental clustering for mining in a data warehousing environment, in: Proceedings of International Conference on Very Large Databases (VLDB’98), New York, USA, 1998, pp. 323–333.
  8. 10.1007/BF00114265 / Machine Learning / Knowledge acquisition via incremental conceptual clustering by Fisher (1987)
  9. S. Guha, R. Rastogi, K. Shim, CURE: an efficient clustering algorithms for large databases, in: Proceeding ACM SIGMOD International Conference on Management of Data, Seattle, WA, 1998, pp. 73–84. (10.1145/276305.276312)
  10. 10.1007/BF01231602 / VLDB Journal / An introduction to spatial database system by Guting (1994)
  11. A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of ACM SIGMOD Int. Conf. on Management of Data, Boston, Massachusetts, 1984, pp. 47–57. (10.1145/971697.602266)
  12. 10.1023/A:1012801612483 / Journal of Intelligent Information Systems / On clustering validation techniques by Halkidi (2001)
  13. {'key': '10.1016/j.datak.2006.01.013_bib13', 'series-title': 'Data Mining Concepts and Techniques', 'author': 'Han', 'year': '2001'} / Data Mining Concepts and Techniques by Han (2001)
  14. {'key': '10.1016/j.datak.2006.01.013_bib14', 'series-title': 'Geographic Data Mining and Knowledge Discovery', 'article-title': 'Spatial clustering methods in data mining: a survey', 'author': 'Han', 'year': '2001'} / Geographic Data Mining and Knowledge Discovery / Spatial clustering methods in data mining: a survey by Han (2001)
  15. A. Hinneburg, D.A. Keim, An efficient approach to clustering in large multimedia databases with noise, in: Proceedings of 4th International Conference on Knowledge Discovery and Data Mining, New York City, NY, 1998, pp. 58–65.
  16. {'key': '10.1016/j.datak.2006.01.013_bib16', 'series-title': 'Proceedings of PKDD, Pisa, Italy', 'first-page': '231', 'article-title': 'Scalable density-based distributed clustering', 'volume': '3202', 'author': 'Januzaj', 'year': '2004'} / Proceedings of PKDD, Pisa, Italy / Scalable density-based distributed clustering by Januzaj (2004)
  17. E. Kolatch, Clustering algorithms for spatial databases: a survey [online]. Available on the web, 2001.
  18. {'key': '10.1016/j.datak.2006.01.013_bib18', 'series-title': 'Proceedings of WAIM', 'first-page': '214', 'article-title': 'A new fast clustering algorithm based on reference and density', 'volume': '2762', 'author': 'Ma', 'year': '2003'} / Proceedings of WAIM / A new fast clustering algorithm based on reference and density by Ma (2003)
  19. J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
  20. R.T. Ng, J. Han, Efficient and effective clustering methods for spatial data mining, in: Proceedings of 20th International Conference on Very Large Data Bases, Santiago, Chile, 1994, pp. 144–155.
  21. {'issue': '8', 'key': '10.1016/j.datak.2006.01.013_bib21', 'first-page': '1382', 'article-title': 'Analyzing popular clustering algorithms from different view-points', 'volume': '13', 'author': 'Qian', 'year': '2002', 'journal-title': 'Journal of Software'} / Journal of Software / Analyzing popular clustering algorithms from different view-points by Qian (2002)
  22. {'key': '10.1016/j.datak.2006.01.013_bib22', 'series-title': 'The Design and Analysis of Spatial Data Structures', 'author': 'Samet', 'year': '1990'} / The Design and Analysis of Spatial Data Structures by Samet (1990)
  23. G. Sheikholeslami, S. Chatterjee, A. Zhang, WaveCluster: a multi-resolution clustering approach for very large spatial databases, in: Proceedings of International Conference on Very Large Databases (VLDB’98), New York, USA, 1998, pp. 428–439.
  24. C. Spieth, F. Streichert, N. Speer, A. Zell, Clustering based approach to identify solutions for the inference of regulatory networks, in: Proceedings of the IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2005. (10.1145/1068009.1068084)
  25. {'key': '10.1016/j.datak.2006.01.013_bib25', 'series-title': 'Introduction to Data Mining', 'author': 'Tan', 'year': '2005'} / Introduction to Data Mining by Tan (2005)
  26. 10.2307/2283635 / Journal of the American Statistical Association / Integer programming and the theory of grouping by Vinod (1969)
  27. 10.1029/98JC02370 / Journal of Geophysical Research / The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites by Walton (1998)
  28. W. Wang, J. Yang, R. Muntz, STING: a statistical information grid approach to spatial data mining, in: Proceedings of 23rd International Conference on Very Large Data Bases (VLDB), 1997, pp. 186–195.
  29. 10.1145/503104.503108 / ACM Transactions on Information Systems / Query clustering using user logs by Wen (2002)
  30. X. Xu, M. Ester, H.-P. Kriegel, J. Sander, A distribution-based clustering algorithm for mining in large spatial databases, in: Proceedings of IEEE International Conference on Data Engineering, Orlando, FL, 1998, pp. 324–331.
  31. T. Zhang, R. Ramakrishnan, M. Linvy, BIRCH: an efficient data clustering method for very large databases, in: Proceeding ACM SIGMOD International Conference on Management of Data, 1996, pp. 103–114. (10.1145/235968.233324)
Dates
Type When
Created 19 years, 5 months ago (March 15, 2006, 7:41 a.m.)
Deposited 2 years, 3 months ago (May 6, 2023, 3:33 p.m.)
Indexed 1 day, 7 hours ago (Aug. 22, 2025, 12:47 a.m.)
Issued 18 years, 7 months ago (Jan. 1, 2007)
Published 18 years, 7 months ago (Jan. 1, 2007)
Published Print 18 years, 7 months ago (Jan. 1, 2007)
Funders 0

None

@article{Birant_2007, title={ST-DBSCAN: An algorithm for clustering spatial–temporal data}, volume={60}, ISSN={0169-023X}, url={http://dx.doi.org/10.1016/j.datak.2006.01.013}, DOI={10.1016/j.datak.2006.01.013}, number={1}, journal={Data & Knowledge Engineering}, publisher={Elsevier BV}, author={Birant, Derya and Kut, Alp}, year={2007}, month=jan, pages={208–221} }