Crossref
journal-article
Elsevier BV
Current Biology (78)
References
104
Referenced
387
10.1126/science.1138700
/ Science / Late Archean biospheric oxygenation and atmospheric evolution by Kaufman (2007)10.1146/annurev.arplant.59.032607.092915
/ Annu. Rev. Plant Biol. / Plastid evolution by Gould (2008)10.1146/annurev.genet.41.110306.130134
/ Annu. Rev. Genet. / The origin and establishment of the plastid in algae and plants by Reyes-Prieto (2007)10.1093/molbev/msh075
/ Mol. Biol. Evol. / A molecular timeline for the origin of photosynthetic eukaryotes by Yoon (2004)10.1038/nature04546
/ Nature / Eukaryotic evolution, changes and challenges by Embley (2006)10.1111/j.1550-7408.2005.00053.x
/ J. Eukaryot. Microbiol. / The new higher level classification of eukaryotes with emphasis on the taxonomy of protists by Adl (2005)10.1046/j.1529-8817.2003.02185.x
/ J. Phycol. / The symbiotic birth and spread of plastids: how many times and whodunnit? by Palmer (2003)10.1098/rstb.2008.0050
/ Philos. Trans. R. Soc. Lond. B Biol. Sci. / The origin of plastids by Howe (2008)10.1016/j.cub.2005.06.040
/ Curr. Biol. / Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes by Rodriguez-Ezpeleta (2005)10.1016/j.cub.2007.07.036
/ Curr. Biol. / Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans by Rodriguez-Ezpeleta (2007)10.1093/molbev/msm091
/ Mol. Biol. Evol. / Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes by Nozaki (2007)10.1016/j.tplants.2007.08.002
/ Trends Plant Sci. / Plastid endosymbiosis, genome evolution and the origin of green plants by Stiller (2007)10.1371/journal.pone.0002621
/ PLoS ONE / EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata by Kim (2008)10.1046/j.1529-8817.2003.02070.x
/ J. Phycol. / A single origin of plastids revisited: convergent evolution in organellar genome content by Stiller (2003)10.1073/pnas.182432999
/ Proc. Natl. Acad. Sci. USA / Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus by Martin (2002)10.1038/nrg1271
/ Nat. Rev. Genet. / Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes by Timmis (2004)10.1038/nrm1333
/ Nat. Rev. Mol. Cell Biol. / Protein import into chloroplasts by Soll (2004)10.1111/j.1550-7408.1985.tb04031.x
/ J. Protozool. / Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles by Cavalier-Smith (1985)10.1016/j.cub.2006.11.020
/ Curr. Biol. / The difference between organelles and endosymbionts by Theissen (2006)10.1016/j.cub.2006.09.063
/ Curr. Biol. / Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions by Reyes-Prieto (2006)10.1016/j.cub.2008.02.051
/ Curr. Biol. / Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes by Nowack (2008)10.1093/molbev/msh086
/ Mol. Biol. Evol. / Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin by Prechtl (2004)10.1002/bies.20671
/ BioEssays / How do endosymbionts become organelles? Understanding early events in plastid evolution by Bhattacharya (2007)10.1016/j.cub.2006.11.021
/ Curr. Biol. / Response to Theissen and Martin: “The difference between endosymbionts and organelles” by Bhattacharya (2007)10.1016/j.tim.2007.05.002
/ Trends Microbiol. / The intracellular cyanobacteria of Paulinella chromatophora: endosymbionts or organelles? by Bodyl (2007)10.1139/b78-345
/ Can. J. Bot. / The chloroplasts of Euglena may have evolved from symbiotic green algae by Gibbs (1978)10.2307/1218702
/ Taxon / Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes by Taylor (1974)10.1146/annurev.arplant.57.032905.105413
/ Annu. Rev. Plant Biol. / Looking at life: from binoculars to the electron microscope by Gibbs (2006)10.1093/nar/21.15.3537
/ Nucleic Acids Res. / Complete sequence of Euglena gracilis chloroplast DNA by Hallick (1993)10.1016/j.tree.2005.09.005
/ Trends Ecol. Evol. / The tree of eukaryotes by Keeling (2005)10.1002/bies.20551
/ BioEssays / Nucleomorph genomes: structure, function, origin and evolution by Archibald (2007)10.1073/pnas.0600707103
/ Proc. Natl. Acad. Sci. USA / Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus by Gilson (2006)10.1111/j.0022-3646.1984.00310.x
/ J. Phycol. / Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova) by Hibberd (1984)10.1038/35074092
/ Nature / The highly reduced genome of an enslaved algal nucleus by Douglas (2001)10.1073/pnas.0707419104
/ Proc. Natl. Acad. Sci. USA / Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function by Lane (2007)10.1007/PL00006462
/ J. Mol. Evol. / The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae by Douglas (1999)10.1016/j.ympev.2007.03.003
/ Mol. Phylogenet. Evol. / Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids by Sanchez-Puerta (2007)10.1073/pnas.242379899
/ Proc. Natl. Acad. Sci. USA / The single, ancient origin of chromist plastids by Yoon (2002)10.1126/science.1076003
/ Science / A green algal apicoplast ancestor by Funes (2002)10.1126/science.1083647
/ Science / Comment on “A green algal apicoplast ancestor” by Waller (2003)10.1038/nrmicro843
/ Nat. Rev. Microbiol. / Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast by Ralph (2004)10.3732/ajb.91.10.1523
/ Am. J. Bot. / Dinoflagellates: A remarkable evolutionary experiment by Hackett (2004)10.1046/j.1529-8817.2003.02100.x
/ J. Phycol. / Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae) by Hackett (2003)10.1111/j.1438-8677.1988.tb00033.x
/ Botanica Acta. / Cryptophycean-like double membrane-bound plastid chloroplast in the dinoflagellate, Dinophysis Ehrenb.: evolutionary, phylogenetic and toxicological implications by Schnepf (1988)10.1093/oxfordjournals.molbev.a026350
/ Mol. Biol. Evol. / Phylogenetic analyses indicate that the 19′hexanoyloxy-fucoxanthin- containing dinoflagellates have tertiary plastids of haptophyte origin by Tengs (2000)10.1242/jcs.5.2.479
/ J. Cell Sci. / Observations on the fine structure of the eyespot and associated organelles in the dinoflagellate Glenodinium foliaceum by Dodge (1969)10.1099/00207713-50-6-2075
/ Int. J. Syst. Evol. Microbiol. / Evolutionary relationship between dinoflagellates bearing obligate diatom endosymbionts: insight into tertiary endosymbiosis by Inagaki (2000)10.1111/j.0022-3646.1990.00741.x
/ J. Phycol. / Lepidodinium viride gen et sp. nov. (Gymnodiniales, Dinophyta), a green dinoflagellate with a chlorophyll a- and b-containing endosymbiont by Watanabe (1990)10.1111/j.1440-1835.2006.00442.x
/ Phycol. Res. / Ultrastructure and large subunit rDNA sequence of Lepidodinium viride reveal a close relationship to Lepidodinium chlorophorum comb. nov. (= Gymnodiuium chlorophorum) by Hansen (2007)10.1186/1471-2148-7-172
/ BMC Evol. Biol. / The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages by Imanian (2007)10.1111/j.1550-7408.2004.tb00604.x
/ J. Eukaryot. Microbiol. / HSP90, tubulin and actin are retained in the tertiary endosymbiont genome of Kryptoperidinium foliaceum by McEwan (2004)10.1111/j.1550-7408.1997.tb05672.x
/ J. Eukaryot. Microbiol. / Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta) by Chesnick (1997)10.1080/00173139908559217
/ Grana / Dinophyte chloroplasts and phylogeny—a review by Schnepf (1999)10.1038/nature06635
/ Nature / A photosynthetic alveolate closely related to apicomplexan parasites by Moore (2008)10.1126/science.1101156
/ Science / The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism by Armbrust (2004)10.1038/nature01097
/ Nature / Genome sequence of the human malaria parasite Plasmodium falciparum by Gardner (2002)10.1073/pnas.1230951100
/ Proc. Natl. Acad. Sci. USA / Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans by Archibald (2003)10.1078/1434-4610-00022
/ Protist / Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes by Deane (2000)10.1016/S0962-8924(00)01833-X
/ Trends Cell Biol. / Chloroplast transit peptides: structure, function and evolution by Bruce (2000)10.1093/molbev/msm008
/ Mol. Biol. Evol. / Der1-mediated preprotein import into the periplastid compartment of chromalveolates? by Sommer (2007)10.1111/j.1550-7408.1999.tb04614.x
/ J. Eukaryot. Microbiol. / Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree by Cavalier-Smith (1999)10.1093/molbev/msl129
/ Mol. Biol. Evol. / The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts by Rogers (2007)10.1111/j.1529-8817.2007.00411.x
/ J. Phycol. / Origins of the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO by Takahashi (2007)10.1016/j.tim.2004.04.001
/ Trends Microbiol. / Did trypanosomatid parasites have photosynthetic ancestors? by Leander (2004)10.1016/S0168-9525(02)02777-4
/ Trends Genet. / Recycled plastids: a green movement in eukaryotic evolution by Archibald (2002)10.1111/j.1529-8817.2008.00559.x
/ J. Phycol. / A hypothesis for plastid evolution in chromalveolates by Sanchez-Puerta (2008){'key': '10.1016/j.cub.2008.11.067_bib67', 'first-page': '57', 'article-title': 'The apicoplast: a review of the derived plastid of apicomplexan parasites', 'volume': '7', 'author': 'Waller', 'year': '2005', 'journal-title': 'Curr. Issues Mol. Biol.'}
/ Curr. Issues Mol. Biol. / The apicoplast: a review of the derived plastid of apicomplexan parasites by Waller (2005)10.1093/molbev/msn075
/ Mol. Biol. Evol. / Plastid-derived genes in the non-photosynthetic alveolate Oxyrrhis marina by Slamovits (2008)10.1016/j.protis.2006.09.004
/ Protist / Plastid genes in a non-photosynthetic dinoflagellate by Sanchez-Puerta (2007)10.1016/j.ejop.2007.02.002
/ Eur. J. Protistol. / Is there a plastid in Perkinsus atlanticus (Phylum Perkinsozoa)? by Teles-Grilo (2007)10.1016/j.ijpara.2008.07.010
/ Int. J. Parasitol. / Evolution of the apicoplast and its host: to autotrophy and back again by Obornik (2009)10.2217/17460913.3.4.391
/ Future Microbiol. / The mother of all parasites by Okamoto (2008)10.1126/science.290.5493.972
/ Science / A kingdom-level phylogeny of eukaryotes based on combined protein data by Baldauf (2000)10.1093/oxfordjournals.molbev.a003818
/ Mol. Biol. Evol. / Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids by Fast (2001)10.1093/molbev/msg195
/ Mol. Biol. Evol. / Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids by Harper (2003)10.1128/EC.3.5.1169-1175.2004
/ Eukaryot. Cell / Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates by Patron (2004)10.1111/j.1529-8817.2005.00091.x
/ J. Phycol. / Do plastid-related characters support the chromalveolate hypothesis? by Bodyl (2005)10.1111/j.1550-7408.2002.tb00336.x
/ J. Eukaryot. Microbiol. / Re-examining alveolate evolution using multiple protein molecular phylogenies by Fast (2002)10.1126/science.1094786
/ Science / Complete genome sequence of the apicomplexan, Cryptosporidium parvum by Abrahamsen (2004)10.1186/gb-2004-5-11-r88
/ Genome Biol. / Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum by Huang (2004)10.1126/science.1128796
/ Science / Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis by Tyler (2006)10.1016/j.cub.2008.05.042
/ Curr. Biol. / Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic by Reyes-Prieto (2008)10.1111/j.1462-2920.2007.01322.x
/ Environ. Microbiol. / An experimental test of the symbiosis specificity between the ciliate Paramecium bursaria and strains of the unicellular green alga Chlorella by Summerer (2007)10.1038/nrg2386
/ Nat. Rev. Genet. / Horizontal gene transfer in eukaryotic evolution by Keeling (2008)10.1016/j.cub.2006.07.052
/ Curr. Biol. / Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms by Richards (2006)10.1186/1471-2164-7-22
/ BMC Genomics / Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment by Ricard (2006)10.1016/j.cub.2008.06.031
/ Curr. Biol. / Plastid evolution: remnant algal genes in ciliates by Archibald (2008)10.1371/journal.pone.0000790
/ PLoS One / Phylogenomics reshuffles the eukaryotic supergroups by Burki (2007)10.1098/rsbl.2008.0224
/ Biol. Lett. / Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes by Burki (2008)10.1093/molbev/msm089
/ Mol. Biol. Evol. / Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates by Hackett (2007)10.1016/j.cub.2007.03.069
/ Curr. Biol. / Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages by Patron (2007)10.1371/journal.pgen.0020220
/ PLoS Genet. / Evaluating support for the current classification of eukaryotic diversity by Parfrey (2006)10.1186/1471-2148-8-14
/ BMC Evol. Biol. / Broadly sampled multigene trees of eukaryotes by Yoon (2008)10.1186/1741-7007-4-31
/ BMC Biol. / An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters by Rice (2006)10.1111/j.1462-2920.2008.01580.x
/ Environ. Microbiol. / Widespread distribution of a unique marine protistan lineage by Cuvelier (2008)10.1126/science.1136264
/ Science / Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes by Not (2007)10.1016/j.protis.2004.12.003
/ Protist / The katablepharids are a distant sister group of the Cryptophyta: A proposal for Katablepharidophyta Divisio Nova/Katablepharida Phylum Novum based on SSU rDNA and beta-tubulin phylogeny by Okamoto (2005){'key': '10.1016/j.cub.2008.11.067_bib98', 'first-page': '1833', 'article-title': 'Telonemia, a new protist phylum with affinity to chromist lineages', 'volume': '273', 'author': 'Shalchian-Tabrizi', 'year': '2006', 'journal-title': 'Proc. Biol. Sci.'}
/ Proc. Biol. Sci. / Telonemia, a new protist phylum with affinity to chromist lineages by Shalchian-Tabrizi (2006)10.1186/1471-2148-8-151
/ BMC Evol. Biol. / Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes by Maruyama (2008)10.1093/molbev/msi172
/ Mol. Biol. Evol. / Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages by Bachvaroff (2005)10.1080/09670260600961080
/ Eur. J. Phycol. / Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis by Bodyl (2006)10.1007/s00239-004-0305-3
/ J. Mol. Evol. / A “green” phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates by Petersen (2006)10.1016/j.protis.2006.12.004
/ Protist / Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses by Teich (2007)10.1016/j.tree.2008.02.004
/ Trends Ecol. Evol. / The eukaryotic tree of life: endosymbiosis takes its TOL by Lane (2008)
Dates
Type | When |
---|---|
Created | 16 years, 7 months ago (Jan. 27, 2009, 5:10 a.m.) |
Deposited | 1 year, 3 months ago (May 6, 2024, 1:19 p.m.) |
Indexed | 2 days, 11 hours ago (Sept. 3, 2025, 7:14 a.m.) |
Issued | 16 years, 8 months ago (Jan. 1, 2009) |
Published | 16 years, 8 months ago (Jan. 1, 2009) |
Published Print | 16 years, 8 months ago (Jan. 1, 2009) |
@article{Archibald_2009, title={The Puzzle of Plastid Evolution}, volume={19}, ISSN={0960-9822}, url={http://dx.doi.org/10.1016/j.cub.2008.11.067}, DOI={10.1016/j.cub.2008.11.067}, number={2}, journal={Current Biology}, publisher={Elsevier BV}, author={Archibald, John M.}, year={2009}, month=jan, pages={R81–R88} }