Crossref
journal-article
Elsevier BV
Current Biology (78)
References
51
Referenced
313
10.1086/414426
/ Q. Rev. Biol. / Mechanisms of epithelial invagination by Ettensohn (1985)10.1242/dev.00211
/ Development / Mechanisms of cell positioning during C. elegans gastrulation by Lee (2003)10.1242/dev.110.1.73
/ Development / Cell shape changes during gastrulation in Drosophila by Leptin (1990)10.1242/dev.109.2.243
/ Development / Mechanisms of neurulation by Schoenwolf (1990)10.1242/dev.103.1.211
/ Development / The behaviour and function of bottle cells during gastrulation of Xenopus laevis by Hardin (1988)10.1002/dvdy.1144
/ Dev. Dyn. / Towards a cellular and molecular understanding of neurulation by Colas (2001)10.1016/0012-1606(84)90284-7
/ Dev. Biol. / Quantitative analyses of changes in cell shapes during bending of the avian neural plate by Schoenwolf (1984){'key': '10.1016/j.cub.2003.11.054_BIB8', 'first-page': '275', 'article-title': 'Neurulation in the Mexican salamander (Ambystoma mexicanum)', 'volume': '74', 'author': 'Brun', 'year': '1983', 'journal-title': 'J. Embryol. Exp. Morphol.'}
/ J. Embryol. Exp. Morphol. / Neurulation in the Mexican salamander (Ambystoma mexicanum) by Brun (1983){'key': '10.1016/j.cub.2003.11.054_BIB9', 'first-page': '19', 'article-title': 'Neurulation and the cortical tractor model for epithelial folding', 'volume': '96', 'author': 'Jacobson', 'year': '1986', 'journal-title': 'J. Embryol. Exp. Morphol.'}
/ J. Embryol. Exp. Morphol. / Neurulation and the cortical tractor model for epithelial folding by Jacobson (1986)10.1002/cne.902760404
/ J. Comp. Neurol. / Microsurgical analyses of avian neurulation by Schoenwolf (1988)10.1093/icb/13.4.989
/ Am. Zool. / Microtubules and microfilaments in amphibian neurulation by Burnside (1973)10.1002/ar.1092200111
/ Anat. Rec. / A reexamination of the role of microfilaments in neurulation in the chick embryo by Schoenwolf (1988)10.1002/(SICI)1097-0177(199907)215:3<273::AID-AJA9>3.0.CO;2-H
/ Dev. Dyn. / Bending of the neural plate during mouse spinal neurulation is independent of actin microfilaments by Ybot-Gonzalez (1999)10.1002/dvdy.10078
/ Dev. Dyn. / Multistep role for actin in initial closure of the mesencephalic neural groove in the chick embryo by van Straaten (2002)10.1242/dev.127.22.4891
/ Development / The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development by Brouns (2000){'key': '10.1016/j.cub.2003.11.054_BIB16', 'first-page': '199', 'article-title': 'Mechanisms of normal and abnormal neurulation', 'volume': '41', 'author': 'Fleming', 'year': '1997', 'journal-title': 'Int. J. Dev. Biol.'}
/ Int. J. Dev. Biol. / Mechanisms of normal and abnormal neurulation by Fleming (1997)10.1093/hmg/9.6.993
/ Hum. Mol. Genet. / Mouse models for neural tube closure defects by Juriloff (2000)10.1016/S0092-8674(00)81537-8
/ Cell / Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice by Hildebrand (1999)10.1046/j.1440-169x.2001.00587.x
/ Dev. Growth Differ. / Of mice, frogs and flies by Muller (2001)10.1002/aja.1002020410
/ Dev. Dyn. / Epithelial cell polarity in early Xenopus development by Muller (1995){'key': '10.1016/j.cub.2003.11.054_BIB21', 'first-page': '235', 'article-title': 'Adhesion and polarity of amphibian embryo blastomeres', 'volume': '85', 'author': 'Armstrong', 'year': '1982', 'journal-title': 'Prog. Clin. Biol. Res.'}
/ Prog. Clin. Biol. Res. / Adhesion and polarity of amphibian embryo blastomeres by Armstrong (1982)10.1083/jcb.118.6.1359
/ J. Cell Biol. / The establishment of polarized membrane traffic in Xenopus laevis embryos by Roberts (1992)10.1016/S0925-4773(00)00368-3
/ Mech. Dev. / Tight junction biogenesis in the early Xenopus embryo by Fesenko (2000)10.1242/dev.00490
/ Development / Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo by Chalmers (2003)10.1016/0092-8674(82)90273-2
/ Cell / A major developmental transition in early Xenopus embryos by Newport (1982)10.1016/0092-8674(94)90158-9
/ Cell / Competition between chromatin and transcription complex assembly regulates gene expression during early development by Prioleau (1994)10.1006/dbio.2001.0560
/ Dev. Biol. / DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos by Stancheva (2002)10.1016/0012-1606(83)90045-3
/ Dev. Biol. / A subcortical, pigment-containing structure in Xenopus eggs with contractile properties by Merriam (1983)10.1002/jez.1400930205
/ J. Exp. Zool. / Properties and functions of the surface coat in amphibian embryos by Holtfreter (1943)10.1093/emboj/18.3.605
/ EMBO J. / The Rap1 GTPase functions as a regulator of morphogenesis in vivo by Asha (1999)10.1016/S0092-8674(00)80482-1
/ Cell / The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation by Barrett (1997)10.1101/gad.12.2.274
/ Genes Dev. / DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila by Hacker (1998)10.1016/S0012-1606(03)00206-9
/ Dev. Biol. / Distinct functions of Rho and Rac are required for convergent extension during Xenopus gastrulation by Tahinci (2003)10.1101/gad.1022203
/ Genes Dev. / Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation by Habas (2003)10.1093/emboj/17.23.6776
/ EMBO J. / All in the family? New insights and questions regarding interconnectivity of Ras, Rap1 and Ral by Bos (1998)10.1038/35073073
/ Nat. Rev. Mol. Cell Biol. / Rap1 signalling by Bos (2001)10.1016/0092-8674(91)90555-D
/ Cell / Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1 by Rubinfeld (1991)10.1074/jbc.M109176200
/ J. Biol. Chem. / Rap-specific GTPase activating protein follows an alternative mechanism by Brinkmann (2002)10.1002/jez.1401970205
/ J. Exp. Zool. / Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation by Jacobson (1976){'key': '10.1016/j.cub.2003.11.054_BIB40', 'series-title': 'The Early Development of Xenopus laevis', 'author': 'Hausen', 'year': '1991'}
/ The Early Development of Xenopus laevis by Hausen (1991)10.1002/ar.1090970203
/ Anat. Rec. / Mechanics of invagination by Lewis (1947)10.1002/gene.1053
/ Genesis / Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos by Draper (2001)10.1242/dev.00575
/ Development / lockjaw encodes a zebrafish tfap2a required for early neural crest development by Knight (2003)10.1073/pnas.97.17.9591
/ Proc. Natl. Acad. Sci. USA / Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients by Lacerra (2000)10.1242/dev.129.21.5065
/ Development / A zebrafish sox9 gene required for cartilage morphogenesis by Yan (2002)10.1016/0092-8674(94)90384-0
/ Cell / A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation by Costa (1994)10.1242/dev.129.10.2507
/ Development / Sonic hedgehog and the molecular regulation of mouse neural tube closure by Ybot-Gonzalez (2002)10.1242/dev.00123
/ Development / Neural tube closure requires Dishevelled-dependent convergent extension of the midline by Wallingford (2002)10.1056/NEJM199911113412006
/ N. Engl. J. Med. / Neural-tube defects by Botto (1999)10.1006/dbio.2000.9945
/ Dev. Biol. / Use of large-scale expression cloning screens in the Xenopus laevis tadpole to identify gene function by Grammer (2000)10.1073/pnas.87.11.4284
/ Proc. Natl. Acad. Sci. USA / Genetic analysis of the Kirsten-ras-revertant 1 gene by Kitayama (1990)
Dates
Type | When |
---|---|
Created | 21 years, 4 months ago (April 13, 2004, 5:30 a.m.) |
Deposited | 1 year, 3 months ago (May 6, 2024, 11:52 a.m.) |
Indexed | 4 days, 15 hours ago (Aug. 27, 2025, 11:53 a.m.) |
Issued | 21 years, 9 months ago (Dec. 1, 2003) |
Published | 21 years, 9 months ago (Dec. 1, 2003) |
Published Print | 21 years, 9 months ago (Dec. 1, 2003) |
@article{Haigo_2003, title={Shroom Induces Apical Constriction and Is Required for Hingepoint Formation during Neural Tube Closure}, volume={13}, ISSN={0960-9822}, url={http://dx.doi.org/10.1016/j.cub.2003.11.054}, DOI={10.1016/j.cub.2003.11.054}, number={24}, journal={Current Biology}, publisher={Elsevier BV}, author={Haigo, Saori L. and Hildebrand, Jeffrey D. and Harland, Richard M. and Wallingford, John B.}, year={2003}, month=dec, pages={2125–2137} }