Crossref
journal-article
Elsevier BV
Current Opinion in Solid State and Materials Science (78)
References
117
Referenced
195
10.1557/mrs2006.174
/ MRS Bull. / Toward computational materials design: the impact of density functional theory on materials research by Hafner (2006)10.1038/nmat3568
/ Nat. Mater. / The high-throughput highway to computational materials design by Curtarolo (2013)10.1007/s11837-013-0755-4
/ JOM / Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD) by Saal (2013)10.1038/npjcompumats.2015.10
/ Npj Comput. Mater. / The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies by Kirklin (2015)10.1063/1.4812323
/ APL Mater. / Commentary: the materials project: a materials genome approach to accelerating materials innovation by Jain (2013)10.1529/biophysj.108.131565
/ Biophys. J. / Ten-microsecond molecular dynamics simulation of a fast-folding WW domain by Freddolino (2008)10.1142/S0129183108012911
/ Int. J. Mod. Phys. C / Trillion-atom molecular dynamics becomes a reality by Germann (2008)10.1016/j.commatsci.2012.02.002
/ Comput. Mater. Sci. / AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations by Curtarolo (2012)10.1103/PhysRevLett.115.205901
/ Phys. Rev. Lett. / Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization by Seko (2015)10.1016/S1369-7021(05)71123-8
/ Mater. Today / Materials informatics by Rajan (2005)10.1103/PhysRevLett.108.058301
/ Phys. Rev. Lett. / Fast and accurate modeling of molecular atomization energies with machine learning by Rupp (2012)10.1088/1367-2630/15/9/095003
/ New J. Phys. / Machine learning of molecular electronic properties in chemical compound space by Montavon (2013)10.1103/PhysRevB.92.014106
/ Phys. Rev. B / Accelerated materials property predictions and design using motif-based fingerprints by Huan (2015)10.1021/acs.jctc.5b00099
/ J. Chem. Theory Comput. / Big data meets quantum chemistry approximations: the Δ-machine learning approach by Ramakrishnan (2015)10.1039/c1ee02056k
/ Energy Environ. Sci. / Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics by Olivares-Amaya (2011)10.1073/pnas.1108486108
/ Proc. Natl. Acad. Sci. / Simplifying the representation of complex free-energy landscapes using sketch-map by Ceriotti (2011)10.1063/1.4900655
/ J. Chem. Phys. / Recognizing molecular patterns by machine learning: an agnostic structural definition of the hydrogen bond by Gasparotto (2014)10.1038/srep02810
/ Sci. Rep. / Accelerating materials property predictions using machine learning by Pilania (2013)10.1007/s10853-012-6639-0
/ J. Mater. Sci. / MQSPR modeling in materials informatics: a way to shorten design cycles? by Sukumar (2012)10.1021/ct400195d
/ J. Chem. Theory Comput. / Assessment and validation of machine learning methods for predicting molecular atomization energies by Hansen (2013)10.1002/adfm.201501919
/ Adv. Funct. Mater. / Learning from the Harvard clean energy project: the use of neural networks to accelerate materials discovery by Pyzer-Knapp (2015)10.1021/jp404287t
/ J. Phys. Chem. C / Atomic property weighted radial distribution functions descriptors of metal-organic frameworks for the prediction of gas uptake capacity by Fernandez (2013)10.1021/jz501331m
/ J. Phys. Chem. Lett. / Rapid and accurate machine learning recognition of high performing metal organic frameworks for CO2 capture by Fernandez (2014)10.1021/acs.chemmater.5b01475
/ Chem. Mater. / What are the best materials to separate a xenon/krypton mixture? by Simon (2015)10.1103/PhysRevB.85.235149
/ Phys. Rev. B / Density functionals for surface science: exchange-correlation model development with Bayesian error estimation by Wellendorff (2012)10.1103/PhysRevLett.95.216401
/ Phys. Rev. Lett. / Bayesian error estimation in density-functional theory by Mortensen (2005)10.1007/s11244-012-9801-7
/ Top. Catal. / Construction of new electronic density functionals with error estimation through fitting by Petzold (2012)10.1103/PhysRevLett.111.073003
/ Phys. Rev. Lett. / Understanding and reducing errors in density functional calculations by Kim (2013)10.1103/PhysRevLett.108.253002
/ Phys. Rev. Lett. / Finding density functionals with machine learning by Snyder (2012)10.1140/epjb/e2014-50070-0
/ Eur. Phys. J. B / Next generation interatomic potentials for condensed systems by Handley (2014)10.1063/1.4942634
/ APL Mater. / Perspective: data infrastructure for high throughput materials discovery by Pfeif (2016)10.1063/1.4944682
/ APL Mater. / Perspective: interactive material property databases through aggregation of literature data by Seshadri (2016)10.1557/mrs.2016.93
/ MRS Bull. / Materials science with large-scale data and informatics: unlocking new opportunities by Hill (2016)10.1007/s11837-016-1984-0
/ JOM / Materials data infrastructure: a case study of the citrination platform to examine data import, storage, and access by O’Mara (2016)- C. Campbell, Materials Data Landscape, 2016.
{'year': '2011', 'series-title': 'Data Mining: Practical Machine Learning Tools and Techniques', 'author': 'Witten', 'key': '10.1016/j.cossms.2016.07.002_b0180'}
/ Data Mining: Practical Machine Learning Tools and Techniques by Witten (2011){'key': '10.1016/j.cossms.2016.07.002_b0185', 'series-title': 'Rev. Comput. Chem.', 'article-title': 'Machine learning in materials science: recent progress and emerging applications', 'author': 'Mueller', 'year': '2015'}
/ Rev. Comput. Chem. / Machine learning in materials science: recent progress and emerging applications by Mueller (2015)10.1002/qua.24917
/ Int. J. Quantum Chem. / Crystal structure representations for machine learning models of formation energies by Faber (2015)10.1103/PhysRevLett.114.105503
/ Phys. Rev. Lett. / Big data of materials science: critical role of the descriptor by Ghiringhelli (2015)10.1016/j.physb.2014.11.002
/ Phys. B: Condens. Matter. / Mining for elastic constants of intermetallics from the charge density landscape by Kong (2015)10.1145/1656274.1656278
/ ACM SIGKDD Explor. Newsl. / The WEKA data mining software by Hall (2009){'key': '10.1016/j.cossms.2016.07.002_b0210', 'first-page': '2825', 'article-title': 'Scikit-learn: machine learning in Python', 'volume': '12', 'author': 'Pedregosa', 'year': '2011', 'journal-title': 'J. Mach. Learn. Res.'}
/ J. Mach. Learn. Res. / Scikit-learn: machine learning in Python by Pedregosa (2011){'key': '10.1016/j.cossms.2016.07.002_b0215', 'series-title': 'Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. – KDD ’13', 'first-page': '847', 'article-title': 'Auto-WEKA', 'author': 'Thornton', 'year': '2013'}
/ Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. – KDD ’13 / Auto-WEKA by Thornton (2013)10.1038/srep19375
/ Sci. Rep. / Machine learning bandgaps of double perovskites by Pilania (2016)10.1023/A:1010933404324
/ Mach. Learn. / No title by Breiman (2001)10.1109/TPAMI.2006.211
/ IEEE Trans. Pattern Anal. Mach. Intell. / Rotation forest: a new classifier ensemble method by Rodríguez (2006)10.1103/PhysRevB.89.094104
/ Phys. Rev. B / Combinatorial screening for new materials in unconstrained composition space with machine learning by Meredig (2014){'key': '10.1016/j.cossms.2016.07.002_b0240', 'first-page': '011019', 'article-title': 'Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling', 'volume': '4', 'author': 'Carrete', 'year': '2014', 'journal-title': 'Phys. Rev. X'}
/ Phys. Rev. X / Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling by Carrete (2014)10.1103/PhysRevB.89.054303
/ Phys. Rev. B / Machine learning with systematic density-functional theory calculations: application to melting temperatures of single- and binary-component solids by Seko (2014)10.1038/srep19660
/ Sci. Rep. / Adaptive strategies for materials design using uncertainties by Balachandran (2016)10.1063/1.4944627
/ APL Mater. / Perspective: codesign for materials science: an optimal learning approach by Lookman (2016)10.1007/s10822-015-9832-9
/ J. Comput. Aided Mol. Des. / Introducing the “active search” method for iterative virtual screening by Garnett (2015)10.1103/PhysRevB.90.104108
/ Phys. Rev. B / Accuracy and transferability of Gaussian approximation potential models for tungsten by Szlachta (2014)10.1103/PhysRevB.89.205118
/ Phys. Rev. B / How to represent crystal structures for machine learning: towards fast prediction of electronic properties by Schütt (2014)10.1103/PhysRevLett.98.146401
/ Phys. Rev. Lett. / Generalized neural-network representation of high-dimensional potential-energy surfaces by Behler (2007)10.1103/PhysRevLett.104.136403
/ Phys. Rev. Lett. / Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons by Bartók (2010)10.1002/qua.24927
/ Int. J. Quantum Chem. / Gaussian approximation potentials: a brief tutorial introduction by Bartók (2015)10.1016/j.jcp.2014.12.018
/ J. Comput. Phys. / Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials by Thompson (2015)10.1103/PhysRevB.87.184115
/ Phys. Rev. B / On representing chemical environments by Bartók (2013)10.1002/qua.24836
/ Int. J. Quantum Chem. / Adaptive machine learning framework to accelerate ab initio molecular dynamics by Botu (2015)10.1103/PhysRevB.90.024101
/ Phys. Rev. B / Sparse representation for a potential energy surface by Seko (2014){'year': '2002', 'series-title': 'Principal Component Analysis', 'author': 'Jolliffe', 'key': '10.1016/j.cossms.2016.07.002_b0310'}
/ Principal Component Analysis by Jolliffe (2002)10.1103/PhysRevB.49.3109
/ Phys. Rev. B / Melting line of aluminum from simulations of coexisting phases by Morris (1994)10.1063/1.4819792
/ J. Chem. Phys. / Solid-liquid coexistence in small systems: a statistical method to calculate melting temperatures by Hong (2013)10.1002/aenm.201300060
/ Adv. Energy Mater. / Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms by Fujimura (2013)10.1021/ci500752n
/ J. Chem. Inf. Model. / Informatics-aided density functional theory study on the Li ion transport of tavorite-type LiMTO4F (M3+–T5+, M2+–T6+) by Jalem (2015)10.1039/c3ee43874k
/ Energy Environ. Sci. / Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics by Deml (2014)10.1021/acs.jpclett.5b00710
/ J. Phys. Chem. Lett. / Intrinsic material properties dictating oxygen vacancy formation energetics in metal oxides by Deml (2015){'key': '10.1016/j.cossms.2016.07.002_b0345', 'series-title': 'Inf. Sci. Mater. Discov. Des', 'first-page': '223', 'article-title': 'Discovering electronic signatures for phase stability of intermetallics via machine learning', 'author': 'Broderick', 'year': '2016'}
/ Inf. Sci. Mater. Discov. Des / Discovering electronic signatures for phase stability of intermetallics via machine learning by Broderick (2016){'key': '10.1016/j.cossms.2016.07.002_b0350', 'series-title': 'Inf. Sci. Mater. Discov. Des', 'first-page': '187', 'article-title': 'Materials informatics using ab initio data: application to MAX phases', 'author': 'Ching', 'year': '2016'}
/ Inf. Sci. Mater. Discov. Des / Materials informatics using ab initio data: application to MAX phases by Ching (2016)10.1557/mrs2006.225
/ MRS Bull. / Electronic-structure-based design of ordered alloys by Bligaard (2006)10.1038/46995
/ Nature / The inverse band-structure problem of finding an atomic configuration with given electronic properties by Franceschetti (1999)10.1021/acs.jctc.5b00212
/ J. Chem. Theory Comput. / Materials design on-the-fly by Cerqueira (2015)10.1063/1.3272274
/ J. Chem. Phys. / Optimizing core-shell nanoparticle catalysts with a genetic algorithm by Froemming (2009)10.1038/nmat2321
/ Nat. Mater. / Crystal structure prediction from first principles by Woodley (2008)10.1063/1.2210932
/ J. Chem. Phys. / Crystal structure prediction using ab initio evolutionary techniques: principles and applications by Oganov (2006){'key': '10.1016/j.cossms.2016.07.002_b0385', 'series-title': 'Predict. Calc. Cryst. Struct', 'first-page': '181', 'article-title': 'Structure and stability prediction of compounds with evolutionary algorithms', 'author': 'Revard', 'year': '2014'}
/ Predict. Calc. Cryst. Struct / Structure and stability prediction of compounds with evolutionary algorithms by Revard (2014)10.1038/nmat3490
/ Nat. Mater. / A hybrid computational-experimental approach for automated crystal structure solution by Meredig (2013)10.1016/j.cpc.2010.07.048
/ Comput. Phys. Commun. / XtalOpt: an open-source evolutionary algorithm for crystal structure prediction by Lonie (2011)10.1103/PhysRevB.77.104115
/ Phys. Rev. B / Prototype electrostatic ground state approach to predicting crystal structures of ionic compounds: application to hydrogen storage materials by Majzoub (2008){'key': '10.1016/j.cossms.2016.07.002_b0405', 'first-page': '495401', 'article-title': 'A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials', 'volume': '25', 'author': 'Tipton', 'year': '2013', 'journal-title': 'J. Phys.: Condens. Matter'}
/ J. Phys.: Condens. Matter / A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials by Tipton (2013)10.1016/j.cpc.2014.01.015
/ Comput. Phys. Commun. / Symmetry building Monte Carlo-based crystal structure prediction by Michel (2014)10.1063/1.3512900
/ J. Chem. Phys. / Crystal structure prediction using the minima hopping method by Amsler (2010)10.1103/PhysRevB.75.104113
/ Phys. Rev. B / Global space-group optimization problem: finding the stablest crystal structure without constraints by Trimarchi (2007)10.1021/cm100795d
/ Chem. Mater. / Finding nature’s missing ternary oxide compounds using machine learning and density functional theory by Hautier (2010)10.1038/nmat1691
/ Nat. Mater. / Predicting crystal structure by merging data mining with quantum mechanics by Fischer (2006)10.1016/0364-5916(80)90016-4
/ Calphad / Empirical methods of predicting and representing thermodynamic properties of ternary solution phases by Hillert (1980){'key': '10.1016/j.cossms.2016.07.002_b0440', 'first-page': '83', 'article-title': 'Enthalpies of formation of liquid alloys bismuth–gallium–tin at 723K – choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary-system', 'volume': '72', 'author': 'Muggianu', 'year': '1975', 'journal-title': 'J. Chem. Phys. Phys.-Chem. Biol.'}
/ J. Chem. Phys. Phys.-Chem. Biol. / Enthalpies of formation of liquid alloys bismuth–gallium–tin at 723K – choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary-system by Muggianu (1975)10.1038/srep17504
/ Sci. Rep. / Classification of octet AB-type binary compounds using dynamical charges: a materials informatics perspective by Pilania (2015)10.1103/PhysRevB.91.214302
/ Phys. Rev. B / Structure classification and melting temperature prediction in octet AB solids via machine learning by Pilania (2015)10.1103/PhysRevB.85.104104
/ Phys. Rev. B / Data mining for materials: computational experiments with AB compounds by Saad (2012)10.1179/mst.1988.4.8.675
/ Mater. Sci. Technol. / Structure maps for. Pseudobinary and ternary phases by Pettifor (1988)10.1103/PhysRevB.22.5839
/ Phys. Rev. B / Systematization of the stable crystal structure of all AB-type binary compounds: a pseudopotential orbital-radii approach by Zunger (1980)10.1103/RevModPhys.42.317
/ Rev. Mod. Phys. / Ionicity of the chemical bond in crystals by Phillips (1970)10.1103/PhysRev.182.891
/ Phys. Rev. / Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant by Van Vechten (1969)10.1107/S0365110X59002857
/ Acta Crystallogr. / On the crystal chemistry of normal valence compounds by Mooser (1959)10.1021/cm403727z
/ Chem. Mater. / Dissolving the periodic table in cubic zirconia: data mining to discover chemical trends by Meredig (2014){'key': '10.1016/j.cossms.2016.07.002_b0490', 'series-title': 'Proc. Seventeenth Int. Conf. Mach. Learn', 'first-page': '727', 'article-title': 'X-means: extending K-means with efficient estimation of the number of clusters', 'author': 'Pelleg', 'year': '2000'}
/ Proc. Seventeenth Int. Conf. Mach. Learn / X-means: extending K-means with efficient estimation of the number of clusters by Pelleg (2000)10.1021/cm503507h
/ Chem. Mater. / Materials cartography: representing and mining materials space using structural and electronic fingerprints by Isayev (2015)10.1109/2945.841119
/ IEEE Trans. Vis. Comput. Graph. / Graph visualization and navigation in information visualization: a survey by Herman (2000)10.1007/s10822-008-9179-6
/ J. Comput. Aided Mol. Des. / Hierarchical QSAR technology based on the Simplex representation of molecular structure by Kuz’min (2008)10.1103/PhysRevB.93.085142
/ Phys. Rev. B / Predicting density functional theory total energies and enthalpies of formation of metal-nonmetal compounds by linear regression by Deml (2016){'key': '10.1016/j.cossms.2016.07.002_b0515', 'series-title': 'Inf. Sci. Mater. Discov. Des', 'first-page': '157', 'article-title': 'Optimal dopant selection for water splitting with cerium oxides: mining and screening first principles data', 'author': 'Botu', 'year': '2016'}
/ Inf. Sci. Mater. Discov. Des / Optimal dopant selection for water splitting with cerium oxides: mining and screening first principles data by Botu (2016)10.1111/j.1551-2916.2011.04476.x
/ J. Am. Ceram. Soc. / Classification of oxide compounds through data-mining density of states spectra by Broderick (2011)10.1002/sam.10026
/ Stat. Anal. Data Min. / Data mining density of states spectra for crystal structure classification: an inverse problem approach by Broderick (2009)10.1021/ci200628z
/ J. Chem. Inf. Model. / Information-theoretic approach for the discovery of design rules for crystal chemistry by Kong (2012)10.1038/srep13285
/ Sci. Rep. / Materials prediction via classification learning by Balachandran (2015)10.1146/annurev-matsci-070214-021132
/ Annu. Rev. Mater. Res. / Materials informatics: the materials “gene” and big data by Rajan (2015)- <https://github.com/libAtoms/QUIP>.
- <http://www.libatoms.org/>.
10.1006/jcph.1995.1039
/ J. Comput. Phys. / Fast parallel algorithms for short-range molecular dynamics by Plimpton (1995)- W. Daniel, B. David, F. Tony, K. Surya, R. Andrew, PyMKS: Materials Knowledge System in Python (2014). http://dx.doi.org/10.6084/m9.figshare.1015761.
- <https://bitbucket.org/wolverton/magpie/>.
10.1016/j.commatsci.2013.10.016
/ Comput. Mater. Sci. / Informatics-aided bandgap engineering for solar materials by Dey (2014)10.1080/10408436.2013.772503
/ Crit. Rev. Solid State Mater. Sci. / Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals by Lejaeghere (2014)10.1126/science.aad3000
/ Science (80–.) / Reproducibility in density functional theory calculations of solids by Lejaeghere (2016)10.1038/sdata.2014.22
/ Sci. Data. / Quantum chemistry structures and properties of 134 kilo molecules by Ramakrishnan (2014)
Dates
Type | When |
---|---|
Created | 9 years ago (Aug. 4, 2016, 1:46 a.m.) |
Deposited | 4 years, 3 months ago (April 25, 2021, 7:28 a.m.) |
Indexed | 1 week, 3 days ago (Aug. 12, 2025, 5:35 p.m.) |
Issued | 8 years, 2 months ago (June 1, 2017) |
Published | 8 years, 2 months ago (June 1, 2017) |
Published Print | 8 years, 2 months ago (June 1, 2017) |
Funders
1
Center for Hierarchical Materials Design
10.13039/100014720
Region: Americas
pri (Research institutes and centers)
Labels
1
- CHiMaD
@article{Ward_2017, title={Atomistic calculations and materials informatics: A review}, volume={21}, ISSN={1359-0286}, url={http://dx.doi.org/10.1016/j.cossms.2016.07.002}, DOI={10.1016/j.cossms.2016.07.002}, number={3}, journal={Current Opinion in Solid State and Materials Science}, publisher={Elsevier BV}, author={Ward, Logan and Wolverton, Chris}, year={2017}, month=jun, pages={167–176} }