Crossref
journal-article
Elsevier BV
Computational Materials Science (78)
Authors
3
- Wei Li (first)
- Ryan Jacobs (additional)
- Dane Morgan (additional)
References
43
Referenced
207
-
Ishihara, T., Perovskite oxide for solid oxide fuel cells, Springer Science & Business Media, 2009.
(
10.1007/978-0-387-77708-5
) 10.1002/aenm.201702708
/ Adv. Energy Mater. / Material discovery and design principles for stable, high activity perovskite cathodes for solid oxide fuel cells by Jacobs (2018)10.1021/acs.chemmater.6b01182
/ Chem. Mater. / High-throughput computational screening of perovskites for thermochemical water splitting applications by Emery (2016)-
S. Wang et al., Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Phys. Rev. X, 2011. 1(2), 021012.
(
10.1103/PhysRevX.1.021012
) {'issue': '1', 'key': '10.1016/j.commatsci.2018.04.033_b0025', 'first-page': '011019', 'article-title': 'Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling', 'volume': '4', 'author': 'Carrete', 'year': '2014', 'journal-title': 'Phys. Rev. X'}
/ Phys. Rev. X / Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling by Carrete (2014)10.1039/C1EE02717D
/ Energy Environ. Sci. / Computational screening of perovskite metal oxides for optimal solar light capture by Castelli (2012)10.1039/C2EE23482C
/ Energy Environ. Sci. / First principles high throughput screening of oxynitrides for water-splitting photocatalysts by Wu (2013)10.1039/c2ee22341d
/ Energy Environ. Sci. / New cubic perovskites for one-and two-photon water splitting using the computational materials repository by Castelli (2012)10.1038/nmat1752
/ Nat Mater / Computational high-throughput screening of electrocatalytic materials for hydrogen evolution by Greeley (2006)10.1038/nchem.367
/ Nat. Chem. / Alloys of platinum and early transition metals as oxygen reduction electrocatalysts by Greeley (2009)10.1016/j.jeurceramsoc.2007.02.212
/ J. Eur. Ceram. Soc. / Prediction of the functional properties of ceramic materials from composition using artificial neural networks by Scott (2007)10.1103/PhysRevB.93.115104
/ Phys. Rev. B / Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques by Lee (2016)10.1103/PhysRevLett.117.135502
/ Phys. Rev. Lett. / Machine learning energies of 2 million elpasolite (A B C 2 D 6) crystals by Faber (2016)10.1088/1367-2630/15/9/095003
/ New J. Phys. / Machine learning of molecular electronic properties in chemical compound space by Montavon (2013)10.1103/PhysRevB.89.205118
/ Phys. Rev. B / How to represent crystal structures for machine learning: Towards fast prediction of electronic properties by Schütt (2014)10.1021/ct400195d
/ J. Chem. Theory Comput. / Assessment and validation of machine learning methods for predicting molecular atomization energies by Hansen (2013)10.1103/PhysRevB.89.134103
/ Phys. Rev. B / High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability by Armiento (2014)10.1103/PhysRevB.89.094104
/ Phys. Rev. B / Combinatorial screening for new materials in unconstrained composition space with machine learning by Meredig (2014)10.1038/npjcompumats.2016.28
/ Npj Comput. Mater. / A general-purpose machine learning framework for predicting properties of inorganic materials by Ward (2016)10.1021/acs.chemmater.7b00156
/ Chem. Mater. / Predicting the thermodynamic stability of solids combining density functional theory and machine learning by Schmidt (2017)10.1039/C4EE03389B
/ Energy Environ. Sci. / Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations by Liu (2015)10.1063/1.4812323
/ Apl Mater. / Commentary: the materials project: a materials genome approach to accelerating materials innovation by Jain (2013)10.1007/s10994-006-6226-1
/ Mach. Learn. / Extremely randomized trees by Geurts (2006)10.1080/00401706.1970.10488634
/ Technometrics / Ridge regression: biased estimation for nonorthogonal problems by Hoerl (1970){'issue': 'Oct', 'key': '10.1016/j.commatsci.2018.04.033_b0125', 'first-page': '2825', 'article-title': 'Scikit-learn: machine learning in Python', 'volume': '12', 'author': 'Pedregosa', 'year': '2011', 'journal-title': 'J. Mach. Learn. Res.'}
/ J. Mach. Learn. Res. / Scikit-learn: machine learning in Python by Pedregosa (2011)-
W. Li, R. Jacobs, D. Morgan, Data and supplemental information for predicting the thermodynamic stability of perovskite oxides using machine learning models. Data in Brief, 2018. (Submitted for publication).
(
10.1016/j.dib.2018.05.007
) 10.1126/sciadv.1600225
/ Sci. Adv. / The thermodynamic scale of inorganic crystalline metastability by Sun (2016)- Herr, N. The Sourcebook for Teaching Science. 2007 [cited accessed May 2017; Available from: https://www.csun.edu/science/ref/spreadsheets/.
10.1007/BF01507527
/ Naturwissenschaften / Die gesetze der krystallochemie by Goldschmidt (1926)10.1016/j.jallcom.2003.10.017
/ J. Alloys Comp. / Formability of ABO 3 perovskites by Li (2004)- R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallograph. Sect. A: Crystal Phys. Diffr. Theoretical General Crystallograp. 32(5) (1976) p. 751–767.
10.1111/j.1467-9868.2010.00740.x
/ J. Royal Statist. Soc.: Series B (Statistical Methodology) / Stability selection by Meinshausen (2010)10.1023/A:1012487302797
/ Mach. Learn. / Gene selection for cancer classification using support vector machines by Guyon (2002)10.1103/PhysRevE.69.066138
/ Phys. Rev. E / Estimating mutual information by Kraskov (2004)-
D.W. Hosmer Jr, S. Lemeshow, R.X. Sturdivant, Applied logistic regression, vol. 398, John Wiley & Sons, 2013.
(
10.1002/9781118548387
) - B. Yegnanarayana, Artificial Neural neTworks, PHI Learning Pvt. Ltd, 2009.
10.1023/A:1018628609742
/ Neural Process. Lett. / Least squares support vector machine classifiers by Suykens (1999)- Model evaluation: quantifying the quality of predictions. [cited accessed May 2017; Available from: http://scikit-learn.org/stable/modules/model_evaluation.html.
10.1007/s11837-013-0755-4
/ Jom / Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD) by Saal (2013)10.1021/cm400893e
/ Chem. Mater. / Data-driven review of thermoelectric materials: performance and resource considerations by Gaultois (2013)10.3348/kjr.2004.5.1.11
/ Kor. J. Radiol. / Receiver operating characteristic (ROC) curve: practical review for radiologists by Park (2004)10.1021/cm902640j
/ Chem. Mater. / Materials for solid oxide fuel cells by Jacobson (2009)10.1016/j.actamat.2003.08.004
/ Acta Mater. / Fuel cell materials and components by Haile (2003)
Dates
Type | When |
---|---|
Created | 7 years, 4 months ago (April 25, 2018, 6:57 p.m.) |
Deposited | 4 years, 4 months ago (April 18, 2021, 10:56 p.m.) |
Indexed | 14 hours, 29 minutes ago (Aug. 27, 2025, 11:34 a.m.) |
Issued | 7 years, 1 month ago (July 1, 2018) |
Published | 7 years, 1 month ago (July 1, 2018) |
Published Print | 7 years, 1 month ago (July 1, 2018) |
Funders
2
National Science Foundation
10.13039/100000001
Region: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Awards
1
- 1148011
National Science Foundation
10.13039/100000001
Region: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Awards
1
- 1148011
@article{Li_2018, title={Predicting the thermodynamic stability of perovskite oxides using machine learning models}, volume={150}, ISSN={0927-0256}, url={http://dx.doi.org/10.1016/j.commatsci.2018.04.033}, DOI={10.1016/j.commatsci.2018.04.033}, journal={Computational Materials Science}, publisher={Elsevier BV}, author={Li, Wei and Jacobs, Ryan and Morgan, Dane}, year={2018}, month=jul, pages={454–463} }