Crossref
journal-article
Elsevier BV
Computational Materials Science (78)
References
35
Referenced
23
10.1063/1.1559651
/ Appl. Phys. Lett. by Neaton (2003)10.1038/nature03261
/ Nature by Lee (2005)10.1103/PhysRevLett.95.177601
/ Phys. Rev. Lett. by Dawber (2005)10.1063/1.2335367
/ Appl. Phys. Lett. by Tian (2006)10.1002/adma.200601357
/ Adv. Mater. by Seo (2007)10.1002/adma.200700965
/ Adv. Mater. by Dawber (2007)10.1038/nature06817
/ Nature by Bousquet (2008)10.1063/1.3153512
/ Appl. Phys. Lett. by Seo (2009)10.1103/PhysRevLett.107.217601
/ Phys. Rev. Lett. by Aguado-Puente (2011)10.1103/PhysRevLett.106.107204
/ Phys. Rev. Lett. by Benedek (2011)10.1002/adma.201104674
/ Adv. Mater. by Rondinelli (2012)10.1016/j.jssc.2012.04.012
/ J. Solid State Chem. by Benedek (2012){'key': '10.1016/j.commatsci.2014.05.003_b0065', 'author': 'Mulder', 'year': '2013', 'journal-title': 'Adv. Funct. Mater.'}
/ Adv. Funct. Mater. by Mulder (2013)10.1103/PhysRevB.88.014101
/ Phys. Rev. B by Sim (2013)10.1103/PhysRevB.88.060102
/ Phys. Rev. B by Zanolli (2013)10.1063/1.2042630
/ Appl. Phys. Lett. by Nakhmanson (2005)10.1103/PhysRevB.83.020104
/ Phys. Rev. B by Wu (2011)10.1103/PhysRevB.85.054102
/ Phys. Rev. B by Swartz (2012)10.1103/PhysRevLett.75.288
/ Phys. Rev. Lett. by Deaven (1995)10.1021/ja9108374
/ J. Am. Chem. Soc. by Xiang (2010)10.1103/PhysRevLett.99.145501
/ Phys. Rev. Lett. by Liu (2007)10.1103/PhysRevB.82.035416
/ Phys. Rev. B by Xiang (2010)10.1063/1.2210932
/ J. Chem. Phys. by Oganov (2006)10.1103/PhysRevB.52.R5467
/ Phys. Rev. B by Liechtenstein (1995)10.1103/PhysRevB.50.17953
/ Phys. Rev. B by Blöchl (1994)10.1103/PhysRevB.59.1758
/ Phys. Rev. B by Kresse (1999)10.1016/0927-0256(96)00008-0
/ Comput. Mater. Sci. by Kresse (1996)10.1103/PhysRevB.54.11169
/ Phys. Rev. B by Kresse (1996)10.1103/PhysRevB.47.1651
/ Phys. Rev. B by King-Smith (1993)10.1103/RevModPhys.66.899
/ Rev. Mod. Phys. by Resta (1994)10.1134/S1063783410070218
/ Phys. Solid State by Lebedev (2010)- Supplementary materials.
- At 0% strain, only FExy, FEz, AFDxy, AFDzi and AFDzo modes are the unstable modes at Γ and M of P4mmm structure. But at −4 and 4% strains, there are more than the five unstable modes, we only show the five modes for three reasons: (i), they are more likely to be condensed according to our analysis; (ii), to show the evolution of the frequency of the modes with the strain; (iii), they are related to the ferroelectric distortions and oxygen octahedral rotations and tilts.
10.1002/andp.19213690304
/ Ann. Phys. (Berlin) by Ewald (1921)10.1107/S0567739476001551
/ Acta Cryst. A by Shannon (1976)
Dates
Type | When |
---|---|
Created | 11 years, 3 months ago (May 27, 2014, 11:49 a.m.) |
Deposited | 6 years, 11 months ago (Oct. 3, 2018, 5:51 p.m.) |
Indexed | 1 month ago (Aug. 2, 2025, 12:50 a.m.) |
Issued | 11 years, 1 month ago (Aug. 1, 2014) |
Published | 11 years, 1 month ago (Aug. 1, 2014) |
Published Print | 11 years, 1 month ago (Aug. 1, 2014) |
@article{Lu_2014, title={Polarization enhancement in perovskite superlattices by oxygen octahedral tilts}, volume={91}, ISSN={0927-0256}, url={http://dx.doi.org/10.1016/j.commatsci.2014.05.003}, DOI={10.1016/j.commatsci.2014.05.003}, journal={Computational Materials Science}, publisher={Elsevier BV}, author={Lu, X.Z. and Gong, X.G. and Xiang, H.J.}, year={2014}, month=aug, pages={310–314} }