Crossref journal-article
Elsevier BV
Computer Methods in Applied Mechanics and Engineering (78)
Bibliography

Guo, X., Zhang, W., Zhang, J., & Yuan, J. (2016). Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Computer Methods in Applied Mechanics and Engineering, 310, 711–748.

Authors 4
  1. Xu Guo (first)
  2. Weisheng Zhang (additional)
  3. Jian Zhang (additional)
  4. Jie Yuan (additional)
References 42 Referenced 321
  1. 10.1016/0045-7825(88)90086-2 / Comput. Methods Appl. Mech. Engrg. / Generating optimal topologies in structural design using a homogenization method by Bendsoe (1988)
  2. 10.1007/BF01650949 / Struct. Optim. / Optimal shape design as a material distribution problem by Bendsoe (1989)
  3. 10.1016/0045-7825(91)90046-9 / Comput. Methods Appl. Mech. Engrg. / The COC algorithm, part II: topological, geometry, and generalized shape optimization by Zhou (1991)
  4. 10.1016/S0045-7825(02)00559-5 / Comput. Methods Appl. Mech. Engrg. / A level set method for structural topology optimization by Wang (2003)
  5. 10.1016/j.jcp.2003.09.032 / J. Comput. Phys. / Structural optimization using sensitivity analysis and a level set method by Allaire (2004)
  6. 10.1016/j.cma.2014.01.014 / Comput. Methods Appl. Mech. Engrg. / A level set method for shape and topology optimization of both structure and support of continuum structures by Xia (2014)
  7. 10.1016/j.cma.2014.09.022 / Comput. Methods Appl. Mech. Engrg. / Topology optimization with pressure load through a level set method by Xia (2015)
  8. 10.1016/0045-7949(93)90035-C / Comput. Struct. / A simple evolutionary procedure for structural optimization by Xie (1993)
  9. 10.1115/1.1388075 / Appl. Mech. Rev. / Topology optimization of continuum structures: A review by Eschenauer (2001)
  10. {'key': '10.1016/j.cma.2016.07.018_br000050', 'first-page': '7', 'article-title': 'Topology optimization-broadening the areas of application', 'volume': '34', 'author': 'Bendsoe', 'year': '2005', 'journal-title': 'Control Cybernet.'} / Control Cybernet. / Topology optimization-broadening the areas of application by Bendsoe (2005)
  11. 10.1007/s10409-010-0395-7 / Acta Mech. Sinica / Recent development in structural design and optimization by Guo (2010)
  12. 10.1007/s00158-013-0978-6 / Struct. Multidiscip. Optim. / Topology optimization approaches by Sigmund (2013)
  13. 10.1016/j.cma.2014.01.010 / Comput. Methods Appl. Mech. Engrg. / Explicit feature control in structural topology optimization via level set method by Guo (2014)
  14. 10.1016/j.cma.2014.08.027 / Comput. Methods Appl. Mech. Engrg. / An explicit length scale control approach in SIMP-based topology optimization by Zhang (2014)
  15. 10.1016/j.cma.2015.03.007 / Comput. Methods Appl. Mech. Engrg. / Explicit layout control in optimal design of structural systems with multiple embedding components by Zhang (2015)
  16. 10.1007/s00158-008-0250-7 / Struct. Multidiscip. Optim. / Imposing maximum length scale in topology optimization by Guest (2009)
  17. 10.1016/j.cma.2009.09.023 / Comput. Methods Appl. Mech. Engrg. / Topology optimization with multiple phase projection by Guest (2009)
  18. 10.1002/nme.1064 / Internat. J. Numer. Methods Engrg. / Achieving minimum length scale in topology optimization using nodal design variables and projection functions by Guest (2004)
  19. 10.1007/s00158-011-0676-1 / Struct. Multidiscip. Optim. / Eliminating beta-continuation from heaviside projection and density filter algorithms by Guest (2011)
  20. 10.1016/j.cma.2014.09.006 / Comput. Methods Appl. Mech. Engrg. / Optimizing the layout of discrete objects in structures and materials: A projection-based topology optimization approach by Guest (2015)
  21. 10.1016/j.cma.2015.07.015 / Comput. Methods Appl. Mech. Engrg. / Constraints of distance from boundary to skeleton: For the control of length scale in level set based structural topology optimization by Xia (2015)
  22. 10.1016/j.cma.2015.05.003 / Comput. Methods Appl. Mech. Engrg. / Minimum length scale in topology optimization by geometric constraint by Zhou (2015)
  23. 10.1016/j.compstruc.2011.10.009 / Comput. Struct. / A level set solution to the stress-based structural shape and topology optimization by Xia (2012)
  24. 10.1016/j.cma.2014.08.028 / Comput. Methods Appl. Mech. Engrg. / Shape optimization with a level set based mesh evolution method by Allaire (2014)
  25. 10.1115/1.4027609 / J. Appl. Mech. / Doing topology optimization explicitly and geometrically—a new moving morphable components based framework by Guo (2014)
  26. 10.1016/j.cma.2015.05.005 / Comput. Methods Appl. Mech. Engrg. / A geometry projection method for continuum-based topology optimization with discrete elements by Norato (2015)
  27. 10.1007/s00158-015-1372-3 / Struct. Multidiscip. Optim. / A new topology approach based on Moving Morphable Components (MMC) and the ersatz material model by Zhang (2016)
  28. {'year': '2003', 'series-title': 'Topology Optimization: Theory, Methods and Applications', 'author': 'Bendsoe', 'key': '10.1016/j.cma.2016.07.018_br000140'} / Topology Optimization: Theory, Methods and Applications by Bendsoe (2003)
  29. 10.1007/s00158-004-0379-y / Struct. Multidiscip. Optim. / Topological optimization of continuum structures with design-dependent surface loading–Part I: new computational approach for 2D problems by Du (2004)
  30. 10.1038/ncomms4266 / Nature Commun. / Fractal design concepts for stretchable electronics by Fan (2014)
  31. 10.1088/0964-1726/24/2/025005 / Smart Mater. Struct. / Topology optimization and fabrication of low frequency vibration energy harvesting microdevices by Deng (2015)
  32. 10.1007/s11431-016-6027-0 / Sci. China Technol. Sci. / Design for structural flexibility using connected morphable components based topology optimization by Deng (2016)
  33. 10.1002/nme.2092 / Internat. J. Numer. Methods Engrg. / A level setbased parameterization method for structural shape and topology optimization by Luo (2008)
  34. 10.1016/j.cad.2009.12.001 / Comput. Aided Des. / A study on X-FEM in continuum structural optimization using a level set model by Wei (2010)
  35. {'year': '1986', 'series-title': 'Design Sensitivity Analysis of Structural Systems', 'author': 'Haug', 'key': '10.1016/j.cma.2016.07.018_br000175'} / Design Sensitivity Analysis of Structural Systems by Haug (1986)
  36. {'year': '2004', 'series-title': 'Structural Sensitivity Analysis and Optimization', 'author': 'Choi', 'key': '10.1016/j.cma.2016.07.018_br000180'} / Structural Sensitivity Analysis and Optimization by Choi (2004)
  37. 10.1007/s00158-003-0372-x / Struct. Multidiscip. Optim. / Solution to boundary shape optimization problem of linear elastic continua with prescribed natural vibration mode shapes by Inzarulfaisham (2004)
  38. 10.1142/S0219876206000709 / Int. J. Comput. Methods / A smoothing method for shape optimization: traction method using the Robin condition by Azegami (2006)
  39. 10.1002/nme.1620240207 / Internat. J. Numer. Methods Engrg. / The method of moving asymptotes—a new method for structural optimization by Svanberg (1987)
  40. C. Fleury, Structural optimization methods for large scale problems: status and limitations. Proceedings of the ASME 2007 International Design Engineering Technical Conferences &Computers and Information in Engineering Conference IDETC/CIE 2007, DETC2007–34326. 2007, Las Vegas, Nevada, USA.
  41. 10.1016/0168-874X(94)90025-6 / Finite Elem. Anal. Des. / A study of design velocity field computation for shape optimal design by Choi (1994)
  42. 10.1007/s00158-002-0255-6 / Struct. Multidiscip. Optim. / Numerical method for shape optimization using meshfree method by Kim (2002)
Dates
Type When
Created 9 years, 1 month ago (July 26, 2016, 3:20 a.m.)
Deposited 5 years, 10 months ago (Nov. 4, 2019, 9:01 p.m.)
Indexed 2 days, 18 hours ago (Sept. 2, 2025, 6:49 a.m.)
Issued 8 years, 11 months ago (Oct. 1, 2016)
Published 8 years, 11 months ago (Oct. 1, 2016)
Published Print 8 years, 11 months ago (Oct. 1, 2016)
Funders 5
  1. National Natural Science Foundation 10.13039/501100001809 National Natural Science Foundation of China

    Region: Asia

    gov (National government)

    Labels11
    1. Chinese National Science Foundation
    2. Natural Science Foundation of China
    3. National Science Foundation of China
    4. NNSF of China
    5. NSF of China
    6. 国家自然科学基金委员会
    7. National Nature Science Foundation of China
    8. Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
    9. NSFC
    10. NNSF
    11. NNSFC
    Awards3
    1. 11402048
    2. 10925209
    3. 91216201
  2. Fundamental Research Funds for the Central Universities 10.13039/501100012226

    Region: Asia

    gov (Local government)

    Labels2
    1. Fundamental Research Funds for the Central Universities of China
    2. Fundamental Research Fund for the Central Universities
    Awards2
    1. DUT16TD06
    2. DUT15RC(3)057
  3. Program for Changjiang Scholars
  4. Innovative Research Team in University
  5. 111 Project 10.13039/501100013314 Higher Education Discipline Innovation Project

    Region: Asia

    gov (National government)

    Labels4
    1. 111 Plan
    2. 111 Project
    3. National 111 Project of China
    4. Higher Education Discipline Innovation Project of China
    Awards1
    1. B14013

@article{Guo_2016, title={Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons}, volume={310}, ISSN={0045-7825}, url={http://dx.doi.org/10.1016/j.cma.2016.07.018}, DOI={10.1016/j.cma.2016.07.018}, journal={Computer Methods in Applied Mechanics and Engineering}, publisher={Elsevier BV}, author={Guo, Xu and Zhang, Weisheng and Zhang, Jian and Yuan, Jie}, year={2016}, month=oct, pages={711–748} }