Crossref
journal-article
Elsevier BV
Cell Reports (78)
References
48
Referenced
44
10.1074/jbc.M209801200
/ J. Biol. Chem. / Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2 by Ayyagari (2003)10.1074/jbc.R110.209502
/ J. Biol. Chem. / Eukaryotic lagging strand DNA replication employs a multi-pathway mechanism that protects genome integrity by Balakrishnan (2011)10.1016/j.ymeth.2010.02.017
/ Methods / Reconstitution of eukaryotic lagging strand DNA replication by Balakrishnan (2010)10.1074/jbc.272.8.4647
/ J. Biol. Chem. / Enzymes and reactions at the eukaryotic DNA replication fork by Bambara (1997){'key': '10.1016/j.celrep.2012.06.020_bib5', 'first-page': '29', 'article-title': 'Genetic assays for triplet repeat instability in yeast', 'volume': '277', 'author': 'Dixon', 'year': '2004', 'journal-title': 'Methods Mol. Biol.'}
/ Methods Mol. Biol. / Genetic assays for triplet repeat instability in yeast by Dixon (2004){'key': '10.1016/j.celrep.2012.06.020_bib6', 'series-title': 'Introduction to Statistical Analysis', 'author': 'Dixon', 'year': '1969'}
/ Introduction to Statistical Analysis by Dixon (1969)10.1073/pnas.88.16.7160
/ Proc. Natl. Acad. Sci. USA / A constant rate of spontaneous mutation in DNA-based microbes by Drake (1991)10.1007/s00439-006-0164-7
/ Hum. Genet. / Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice by Foiry (2006)10.1074/jbc.M110.165902
/ J. Biol. Chem. / Flap endonuclease 1 mechanism analysis indicates flap base binding prior to threading by Gloor (2010)10.1038/nsmb.2175
/ Nat. Struct. Mol. Biol. / Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops by Gupta (2011)10.1093/genetics/155.4.1657
/ Genetics / The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast by Ireland (2000)10.1074/jbc.270.45.27014
/ J. Biol. Chem. / Pausing of DNA synthesis in vitro at specific loci in CTG and CGG triplet repeats from human hereditary disease genes by Kang (1995)10.1074/jbc.M110662200
/ J. Biol. Chem. / Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate by Kao (2002)10.1016/S0959-437X(99)80013-6
/ Curr. Opin. Genet. Dev. / Eukaryotic DNA mismatch repair by Kolodner (1999)10.1073/pnas.1105461108
/ Proc. Natl. Acad. Sci. USA / Conformational trapping of mismatch recognition complex MSH2/MSH3 on repair-resistant DNA loops by Lang (2011)10.1016/j.jmb.2006.10.099
/ J. Mol. Biol. / Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition by Lee (2007)10.1002/bies.950190309
/ Bioessays / The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair by Lieber (1997)10.1074/jbc.M212061200
/ J. Biol. Chem. / Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion by Liu (2003)10.1016/j.tibs.2011.12.002
/ Trends Biochem. Sci. / DNA base excision repair: a mechanism of trinucleotide repeat expansion by Liu (2012)10.1074/jbc.M109.050286
/ J. Biol. Chem. / Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion by Liu (2009)10.1038/70598
/ Nat. Genet. / Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice by Manley (1999)10.1038/nrg2828
/ Nat. Rev. Genet. / Mechanisms of trinucleotide repeat instability during human development by McMurray (2010)10.1073/pnas.95.21.12438
/ Proc. Natl. Acad. Sci. USA / Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae by Miret (1998){'key': '10.1016/j.celrep.2012.06.020_bib24', 'first-page': '551', 'article-title': 'Table of confidence interval for the median samples from any continuous population. Sankhya', 'volume': '4', 'author': 'Nair', 'year': '1940', 'journal-title': 'Ind. J. Stat.'}
/ Ind. J. Stat. / Table of confidence interval for the median samples from any continuous population. Sankhya by Nair (1940)10.1038/nsmb965
/ Nat. Struct. Mol. Biol. / (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition by Owen (2005)10.1038/nsmb959
/ Nat. Struct. Mol. Biol. / Slipped (CTG)∗(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair by Panigrahi (2005)10.1073/pnas.0909087107
/ Proc. Natl. Acad. Sci. USA / Isolated short CTG/CAG DNA slip-outs are repaired efficiently by hMutSbeta, but clustered slip-outs are poorly repaired by Panigrahi (2010)10.1016/S0960-9822(03)00284-7
/ Curr. Biol. / Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast by Pavlov (2003)10.1093/hmg/7.1.69
/ Hum. Mol. Genet. / Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation by Schweitzer (1998)10.1016/j.jmb.2006.05.032
/ J. Mol. Biol. / Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination by Surtees (2006)10.1074/jbc.C109.014977
/ J. Biol. Chem. / Mismatch recognition protein MutSbeta does not hijack (CAG)n hairpin repair in vitro by Tian (2009)10.1016/j.cell.2011.03.004
/ Cell / Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily by Tsutakawa (2011)10.1074/jbc.M110.132738
/ J. Biol. Chem. / Complementary roles for exonuclease 1 and Flap endonuclease 1 in maintenance of triplet repeats by Vallur (2010)10.1093/hmg/11.2.191
/ Hum. Mol. Genet. / Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins by van den Broek (2002)10.1074/jbc.M305137200
/ J. Biol. Chem. / Analysis of DNA replication intermediates suggests mechanisms of repeat sequence expansion by Veeraraghavan (2003)10.1093/emboj/20.10.2587
/ EMBO J. / Replication slippage involves DNA polymerase pausing and dissociation by Viguera (2001)10.1074/jbc.271.6.2875
/ J. Biol. Chem. / Molecular basis of genetic instability of triplet repeats by Wells (1996)-
Balakrishnan, L., Polaczek, P., Pokharel, S., Campbell, J.L., and Bambara, R.A. (2010). Dna2 exhibits a unique strand end-dependent helicase function. J. Biol. Chem. 285, 38861–38868.
(
10.1074/jbc.M110.165191
) -
Dixon, M.J., Bhattacharyya, S., and Lahue, R.S. (2004). Genetic assays for triplet repeat instability in yeast. Methods Mol. Biol. 277, 29–45.
(
10.1385/1-59259-804-8:029
) - Dixon, W., and Massey, F.J.J. (1969). Introduction to Statistical Analysis (New York, USA: McGraw Hill).
-
Drake, J.W. (1991). A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88, 7160–7164.
(
10.1073/pnas.88.16.7160
) -
Gietz, D., St Jean, A., Woods, R.A., and Schiestl, R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425.
(
10.1093/nar/20.6.1425
) -
Kumar, C., Piacente, S.C., Sibert, J., Bukata, A.R., O’Connor, J., Alani, E., and Surtees, J.A. (2011). Multiple factors insulate Msh2-Msh6 mismatch repair activity from defects in Msh2 domain I. J. Mol. Biol. 411, 765–780.
(
10.1016/j.jmb.2011.06.030
) -
Lee, S.D., Surtees, J.A., and Alani, E. (2007). Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition. J. Mol. Biol. 366, 53–66.
(
10.1016/j.jmb.2006.10.099
) -
Liu, Y., Zhang, H., Veeraraghavan, J., Bambara, R.A., and Freudenreich, C.H. (2004). Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol. Cell. Biol. 24, 4049–4064.
(
10.1128/MCB.24.9.4049-4064.2004
) -
Miret, J.J., Pessoa-Brandão, L., and Lahue, R.S. (1998). Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95, 12438–12443.
(
10.1073/pnas.95.21.12438
) - Nair, K. (1940). Table of confidence interval for the median samples from any continuous population. Sankhya. Ind. J. Stat. 4, 551–558.
-
Surtees, J.A., and Alani, E. (2006). Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination. J. Mol. Biol. 360, 523–536.
(
10.1016/j.jmb.2006.05.032
)
@article{Kantartzis_2012, title={Msh2-Msh3 Interferes with Okazaki Fragment Processing to Promote Trinucleotide Repeat Expansions}, volume={2}, ISSN={2211-1247}, url={http://dx.doi.org/10.1016/j.celrep.2012.06.020}, DOI={10.1016/j.celrep.2012.06.020}, number={2}, journal={Cell Reports}, publisher={Elsevier BV}, author={Kantartzis, Athena and Williams, Gregory M. and Balakrishnan, Lata and Roberts, Rick L. and Surtees, Jennifer A. and Bambara, Robert A.}, year={2012}, month=aug, pages={216–222} }