Crossref
journal-article
Elsevier BV
Cell (78)
References
72
Referenced
176
10.1016/S0074-7742(06)75005-X
/ Int. Rev. Neurobiol. / Development of motoneuron electrical properties and motor output by Baines (2006)10.1523/JNEUROSCI.21-05-01523.2001
/ J. Neurosci. / Altered electrical properties in Drosophila neurons developing without synaptic transmission by Baines (2001){'key': '10.1016/j.cell.2012.09.011_bib3', 'first-page': '1107', 'article-title': 'Drosophila larval NMJ dissection', 'volume': '24', 'author': 'Brent', 'year': '2009', 'journal-title': 'J. Vis. Exp.'}
/ J. Vis. Exp. / Drosophila larval NMJ dissection by Brent (2009)10.1038/nrn2670
/ Nat. Rev. Neurosci. / Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? by Burghes (2009)10.1002/neu.1042
/ J. Neurobiol. / Blockade of the central generator of locomotor rhythm by noncompetitive NMDA receptor antagonists in Drosophila larvae by Cattaert (2001)10.1093/hmg/ddg157
/ Hum. Mol. Genet. / Neuromuscular defects in a Drosophila survival motor neuron gene mutant by Chan (2003)10.1371/journal.pone.0003209
/ PLoS ONE / Modeling spinal muscular atrophy in Drosophila by Chang (2008)10.1016/S0959-4388(03)00006-0
/ Curr. Opin. Neurobiol. / Development of the monosynaptic stretch reflex circuit by Chen (2003)10.1016/j.neuron.2010.07.004
/ Neuron / The role of the TRP channel NompC in Drosophila larval and adult locomotion by Cheng (2010)10.2165/11205910-000000000-00000
/ CNS Drugs / Dalfampridine extended release: in multiple sclerosis by Chwieduk (2010)10.1006/nbdi.1996.0010
/ Neurobiol. Dis. / The neurobiology of childhood spinal muscular atrophy by Crawford (1996)10.1242/dev.026773
/ Development / The development of motor coordination in Drosophila embryos by Crisp (2008)10.1002/cne.21670
/ J. Comp. Neurol. / Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS by Daniels (2008)10.1016/S0896-6273(00)00010-6
/ Neuron / Presynaptic glutamic acid decarboxylase is required for induction of the postsynaptic receptor field at a glutamatergic synapse by Featherstone (2000)10.1523/JNEUROSCI.4749-05.2006
/ J. Neurosci. / Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation by Fox (2006)10.1093/hmg/ddm379
/ Hum. Mol. Genet. / Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect by Gavrilina (2008)10.1523/JNEUROSCI.5775-11.2012
/ J. Neurosci. / Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction by Gogliotti (2012)10.1586/14737175.7.5.453
/ Expert Rev. Neurother. / Fampridine-SR for multiple sclerosis and spinal cord injury by Hayes (2007)10.1016/j.mcn.2007.04.001
/ Mol. Cell. Neurosci. / A sensory feedback circuit coordinates muscle activity in Drosophila by Hughes (2007)10.1083/jcb.200908164
/ J. Cell Biol. / Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond by Ilieva (2009){'key': '10.1016/j.cell.2012.09.011_bib21', 'first-page': '1109', 'article-title': 'Electrophysiological methods for recording synaptic potentials from the NMJ of Drosophila larvae', 'volume': '24', 'author': 'Imlach', 'year': '2009', 'journal-title': 'J. Vis. Exp.'}
/ J. Vis. Exp. / Electrophysiological methods for recording synaptic potentials from the NMJ of Drosophila larvae by Imlach (2009)10.1093/hmg/ddn156
/ Hum. Mol. Genet. / Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy by Kariya (2008)10.1002/(SICI)1097-4695(20000205)42:2<161::AID-NEU1>3.0.CO;2-P
/ J. Neurobiol. / Isolation and characterization of mutants for the vesicular acetylcholine transporter gene in Drosophila melanogaster by Kitamoto (2000)10.1523/JNEUROSCI.4434-08.2009
/ J. Neurosci. / Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice by Kong (2009)10.1038/nature09087
/ Nature / Presynaptic activity regulates Na(+) channel distribution at the axon initial segment by Kuba (2010)10.1093/hmg/ddi078
/ Hum. Mol. Genet. / SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN by Le (2005)10.1016/0092-8674(95)90460-3
/ Cell / Identification and characterization of a spinal muscular atrophy-determining gene by Lefebvre (1995)10.1371/journal.pone.0015457
/ PLoS ONE / Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy by Ling (2010)10.1093/hmg/ddr453
/ Hum. Mol. Genet. / Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy by Ling (2012)10.1073/pnas.96.11.6307
/ Proc. Natl. Acad. Sci. USA / A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy by Lorson (1999)10.1016/j.cell.2012.09.012
/ Cell / An SMN-dependent U12 splicing event essential for motor circuit function by Lotti (2012)10.1016/j.conb.2005.01.011
/ Curr. Opin. Neurobiol. / Development of central pattern generating circuits by Marder (2005)10.1523/JNEUROSCI.0204-12.2012
/ J. Neurosci. / Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy by Martinez (2012)10.1093/hmg/ddn189
/ Hum. Mol. Genet. / Embryonic motor axon development in the severe SMA mouse by McGovern (2008)10.1016/j.neuron.2010.12.032
/ Neuron / Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy by Mentis (2011)10.1093/hmg/8.7.1177
/ Hum. Mol. Genet. / A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2 by Monani (1999)10.1073/pnas.0406164102
/ Proc. Natl. Acad. Sci. USA / Dissection of synaptic excitability phenotypes by using a dominant-negative Shaker K+ channel subunit by Mosca (2005)10.1038/nn.2583
/ Nat. Neurosci. / Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks by Palop (2010)10.1016/S0896-6273(01)00326-9
/ Neuron / Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization by Paradis (2001)10.1007/s11910-010-0095-5
/ Curr. Neurol. Neurosci. Rep. / Spinal muscular atrophy: new and emerging insights from model mice by Park (2010)10.1523/JNEUROSCI.2208-10.2010
/ J. Neurosci. / Reduced survival of motor neuron (SMN) protein in motor neuronal progenitors functions cell autonomously to cause spinal muscular atrophy in model mice expressing the human centromeric (SMN2) gene by Park (2010)10.1172/JCI41615
/ J. Clin. Invest. / CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy by Passini (2010)10.1038/nrm1259
/ Nat. Rev. Mol. Cell Biol. / Splicing double: insights from the second spliceosome by Patel (2003)10.1136/jmg.15.6.409
/ J. Med. Genet. / Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy by Pearn (1978)10.1038/sj.embor.7400941
/ EMBO Rep. / Chaperoning ribonucleoprotein biogenesis in health and disease by Pellizzoni (2007)10.1523/JNEUROSCI.17-11-04500.1997
/ J. Neurosci. / Effects of 4-aminopyridine on muscle and motor unit force in canine motor neuron disease by Pinter (1997)10.1083/jcb.200610053
/ J. Cell Biol. / A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle by Rajendra (2007)10.1016/S0370-4475(83)80042-2
/ Rev. Electroencephalogr. Neurophysiol. Clin. / [Electromyographic study of 50 cases of Werdnig-Hoffmann disease] by Renault (1983)10.1002/ana.21543
/ Ann. Neurol. / Current hypotheses for the underlying biology of amyotrophic lateral sclerosis by Rothstein (2009)10.1016/S1567-133X(01)00011-4
/ Brain Res. Gene Expr. Patterns / Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP by Salvaterra (2001)10.1177/0883073807305667
/ J. Child Neurol. / Animal models of spinal muscular atrophy by Schmid (2007)10.1007/s00401-008-0411-1
/ Acta Neuropathol. / Pathogenesis of proximal autosomal recessive spinal muscular atrophy by Simic (2008)10.1073/pnas.0700895104
/ Proc. Natl. Acad. Sci. USA / Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae by Song (2007)10.1038/416174a
/ Nature / Embryonic assembly of a central pattern generator without sensory input by Suster (2002)10.1002/ana.20473
/ Ann. Neurol. / Natural history of denervation in SMA: relation to age, SMN2 copy number, and function by Swoboda (2005)10.1016/S0301-0082(00)00066-6
/ Prog. Neurobiol. / Non-synaptic ion channels in insects—basic properties of currents and their modulation in neurons and skeletal muscles by Wicher (2001)10.1371/journal.pbio.0060273
/ PLoS Biol. / Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin by Wu (2008)10.1371/journal.pbio.1000135
/ PLoS Biol. / Positional cues in the Drosophila nerve cord: semaphorins pattern the dorso-ventral axis by Zlatic (2009)-
Aberle, H., Haghighi, A.P., Fetter, R.D., McCabe, B.D., Magalhães, T.R., and Goodman, C.S. (2002). wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558.
(
10.1016/S0896-6273(02)00589-5
) -
Ainsley, J.A., Pettus, J.M., Bosenko, D., Gerstein, C.E., Zinkevich, N., Anderson, M.G., Adams, C.M., Welsh, M.J., and Johnson, W.A. (2003). Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr. Biol. 13, 1557–1563.
(
10.1016/S0960-9822(03)00596-7
) -
Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.
(
10.1242/dev.118.2.401
) -
Brent, J., Werner, K., and McCabe, B.D. (2009a). Drosophila larval NMJ immunohistochemistry. J. Vis. Exp. 25, 1108.
(
10.3791/1108
) -
Brent, J.R., Werner, K.M., and McCabe, B.D. (2009b). Drosophila larval NMJ dissection. J. Vis. Exp. 24, 1107.
(
10.3791/1107
) -
Bushey, D., Tononi, G., and Cirelli, C. (2009). The Drosophila fragile X mental retardation gene regulates sleep need. J. Neurosci. 29, 1948–1961.
(
10.1523/JNEUROSCI.4830-08.2009
) -
Davis, G.W., DiAntonio, A., Petersen, S.A., and Goodman, C.S. (1998). Postsynaptic PKA controls quantal size and reveals a retrograde signal that regulates presynaptic transmitter release in Drosophila. Neuron 20, 305–315.
(
10.1016/S0896-6273(00)80458-4
) -
Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D. (1997). The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761–771.
(
10.1242/dev.124.4.761
) -
Jan, L.Y., and Jan, Y.N. (1976). Properties of the larval neuromuscular junction in Drosophila melanogaster. J. Physiol. 262, 189–214.
(
10.1113/jphysiol.1976.sp011592
) -
Mahr, A., and Aberle, H. (2006). The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. Gene Expr. Patterns 6, 299–309.
(
10.1016/j.modgep.2005.07.006
) -
Martin, A.R. (1955). A further study of the statistical composition on the end-plate potential. J. Physiol. 130, 114–122.
(
10.1113/jphysiol.1955.sp005397
) -
Ng, M., Roorda, R.D., Lima, S.Q., Zemelman, B.V., Morcillo, P., and Miesenböck, G. (2002). Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474.
(
10.1016/S0896-6273(02)00975-3
) -
Osterwalder, T., Yoon, K.S., White, B.H., and Keshishian, H. (2001). A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. USA 98, 12596–12601.
(
10.1073/pnas.221303298
) -
Sugimura, K., Yamamoto, M., Niwa, R., Satoh, D., Goto, S., Taniguchi, M., Hayashi, S., and Uemura, T. (2003). Distinct developmental modes and lesion-induced reactions of dendrites of two classes of Drosophila sensory neurons. J. Neurosci. 23, 3752–3760.
(
10.1523/JNEUROSCI.23-09-03752.2003
)
Dates
Type | When |
---|---|
Created | 12 years, 10 months ago (Oct. 11, 2012, 11:52 a.m.) |
Deposited | 2 years, 6 months ago (Jan. 28, 2023, 12:21 p.m.) |
Indexed | 3 weeks, 1 day ago (Aug. 2, 2025, 1 a.m.) |
Issued | 12 years, 10 months ago (Oct. 1, 2012) |
Published | 12 years, 10 months ago (Oct. 1, 2012) |
Published Print | 12 years, 10 months ago (Oct. 1, 2012) |
@article{Imlach_2012, title={SMN Is Required for Sensory-Motor Circuit Function in Drosophila}, volume={151}, ISSN={0092-8674}, url={http://dx.doi.org/10.1016/j.cell.2012.09.011}, DOI={10.1016/j.cell.2012.09.011}, number={2}, journal={Cell}, publisher={Elsevier BV}, author={Imlach, Wendy L. and Beck, Erin S. and Choi, Ben Jiwon and Lotti, Francesco and Pellizzoni, Livio and McCabe, Brian D.}, year={2012}, month=oct, pages={427–439} }