Crossref journal-article
Elsevier BV
Cell (78)
Bibliography

Powers, A. F., Franck, A. D., Gestaut, D. R., Cooper, J., Gracyzk, B., Wei, R. R., Wordeman, L., Davis, T. N., & Asbury, C. L. (2009). The Ndc80 Kinetochore Complex Forms Load-Bearing Attachments to Dynamic Microtubule Tips via Biased Diffusion. Cell, 136(5), 865–875.

Authors 9
  1. Andrew F. Powers (first)
  2. Andrew D. Franck (additional)
  3. Daniel R. Gestaut (additional)
  4. Jeremy Cooper (additional)
  5. Beth Gracyzk (additional)
  6. Ronnie R. Wei (additional)
  7. Linda Wordeman (additional)
  8. Trisha N. Davis (additional)
  9. Charles L. Asbury (additional)
References 39 Referenced 270
  1. 10.1073/pnas.0602249103 / Proc. Natl. Acad. Sci. USA / The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement by Asbury (2006)
  2. 10.1073/pnas.0509723103 / Proc. Natl. Acad. Sci. USA / A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA by Blainey (2006)
  3. 10.1073/pnas.022638399 / Proc. Natl. Acad. Sci. USA / Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA by Brower-Toland (2002)
  4. 10.1016/j.cell.2006.09.039 / Cell / The conserved KMN network constitutes the core microtubule-binding site of the kinetochore by Cheeseman (2006)
  5. 10.1016/j.cell.2008.03.020 / Cell / Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex by Ciferri (2008)
  6. 10.1083/jcb.200208159 / J. Cell Biol. / hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells by DeLuca (2002)
  7. 10.1091/mbc.e04-09-0852 / Mol. Biol. Cell / Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites by DeLuca (2005)
  8. 10.1016/j.cell.2006.09.047 / Cell / Kinetochore microtubule dynamics and attachment stability are regulated by Hec1 by DeLuca (2006)
  9. 10.1146/annurev.cellbio.13.1.83 / Annu. Rev. Cell Dev. Biol. / Microtubule polymerization dynamics by Desai (1997)
  10. 10.1091/mbc.e05-03-0239 / Mol. Biol. Cell / Measuring the stoichiometry and physical interactions between components elucidates the architecture of the vertebrate kinetochore by Emanuele (2005)
  11. 10.1038/ncb1609 / Nat. Cell Biol. / Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis by Franck (2007)
  12. 10.1038/ncb1702 / Nat. Cell Biol. / Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation by Gestaut (2008)
  13. 10.1038/sj.emboj.7601353 / EMBO J. / Microtubule depolymerization can drive poleward chromosome motion in fission yeast by Grishchuk (2006)
  14. 10.1016/j.cub.2008.08.012 / Curr. Biol. / Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of hec1 by Guimaraes (2008)
  15. 10.1016/S0092-8674(01)00438-X / Cell / Molecular analysis of kinetochore-microtubule attachment in budding yeast by He (2001)
  16. 10.1073/pnas.82.13.4404 / Proc. Natl. Acad. Sci. USA / Theoretical problems related to the attachment of microtubules to kinetochores by Hill (1985)
  17. 10.1083/jcb.200803027 / J. Cell Biol. / Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres by Joglekar (2008)
  18. 10.1126/science.1122142 / Science / Chromosomes can congress to the metaphase plate before biorientation by Kapoor (2006)
  19. 10.1038/331499a0 / Nature / Polewards chromosome movement driven by microtubule depolymerization in vitro by Koshland (1988)
  20. 10.1038/373161a0 / Nature / Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization by Lombillo (1995)
  21. 10.1083/jcb.200301088 / J. Cell Biol. / Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics by Maddox (2003)
  22. 10.1146/annurev.cellbio.19.111301.155607 / Annu. Rev. Cell Dev. Biol. / Structure, function, and regulation of budding yeast kinetochores by McAinsh (2003)
  23. 10.1016/j.cell.2008.08.038 / Cell / Fibrils connect microtubule tips with kinetochores: A mechanism to couple tubulin dynamics to chromosome motion by McIntosh (2008)
  24. 10.1016/j.cub.2008.11.007 / Curr. Biol. / Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1) by Miller (2008)
  25. 10.1038/nsmb896 / Nat. Struct. Mol. Biol. / The yeast DASH complex forms closed rings on microtubules by Miranda (2005)
  26. 10.1146/annurev.bb.17.060188.002243 / Annu. Rev. Biophys. Biophys. Chem. / The forces that move chromosomes in mitosis by Nicklas (1988)
  27. 10.1083/jcb.152.6.1255 / J. Cell Biol. / Budding yeast chromosome structure and dynamics during mitosis by Pearson (2001)
  28. 10.1016/S0962-8924(98)01299-9 / Trends Cell Biol. / The vertebrate cell kinetochore and its roles during mitosis by Rieder (1998)
  29. 10.1038/35046574 / Nat. Cell Biol. / Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos by Sharp (2000)
  30. 10.1016/j.cub.2006.06.063 / Curr. Biol. / Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase by Shimogawa (2006)
  31. 10.1016/j.devcel.2007.11.014 / Dev. Cell / The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment by Stumpff (2008)
  32. 10.1016/j.ceb.2007.11.005 / Curr. Opin. Cell Biol. / Kinetochore-microtubule interactions: the means to the end by Tanaka (2008)
  33. 10.1083/jcb.200702141 / J. Cell Biol. / Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles by Tanaka (2007)
  34. 10.1083/jcb.200303167 / J. Cell Biol. / Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss by Weaver (2003)
  35. 10.1073/pnas.0501168102 / Proc. Natl. Acad. Sci. USA / Molecular organization of the Ndc80 complex, an essential kinetochore component by Wei (2005)
  36. 10.1016/j.str.2006.04.007 / Structure / Structure of a central component of the yeast kinetochore: The Spc24p/Spc25p globular domain by Wei (2006)
  37. 10.1038/nsmb1186 / Nat. Struct. Mol. Biol. / The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment by Wei (2007)
  38. 10.1038/nature04409 / Nature / The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends by Westermann (2006)
  39. 10.1016/j.cub.2007.04.056 / Curr. Biol. / Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint by Yang (2007)
Dates
Type When
Created 16 years, 5 months ago (March 6, 2009, 5:27 a.m.)
Deposited 2 years, 6 months ago (Jan. 28, 2023, 10:10 a.m.)
Indexed 1 month, 1 week ago (July 16, 2025, 8:22 a.m.)
Issued 16 years, 5 months ago (March 1, 2009)
Published 16 years, 5 months ago (March 1, 2009)
Published Print 16 years, 5 months ago (March 1, 2009)
Funders 0

None

@article{Powers_2009, title={The Ndc80 Kinetochore Complex Forms Load-Bearing Attachments to Dynamic Microtubule Tips via Biased Diffusion}, volume={136}, ISSN={0092-8674}, url={http://dx.doi.org/10.1016/j.cell.2008.12.045}, DOI={10.1016/j.cell.2008.12.045}, number={5}, journal={Cell}, publisher={Elsevier BV}, author={Powers, Andrew F. and Franck, Andrew D. and Gestaut, Daniel R. and Cooper, Jeremy and Gracyzk, Beth and Wei, Ronnie R. and Wordeman, Linda and Davis, Trisha N. and Asbury, Charles L.}, year={2009}, month=mar, pages={865–875} }